

ST7263B

LOW SPEED USB 8-BIT MCU FAMILY WITH FLASH/ROM, UP TO 512 BYTES RAM, 8-BIT ADC, WDG, TIMER, SCI & I²C

DATA BRIEFING

Memories

- 4, 8 or 16 Kbytes Program Memory (Flash or ROM) with Readout and Write Protection
- In-Application Programming (IAP) and In-Circuit programming (ICP) for Flash devices
- 384 or 512 bytes RAM memory (128-byte stack)

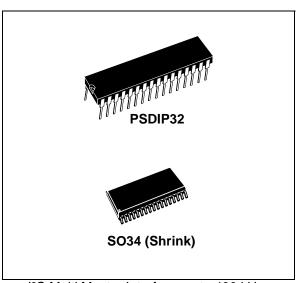
■ Clock, Reset and Supply Management

- Run, Wait, Slow and Halt CPU modes
- 12 or 24 MHz Oscillator
- RAM Retention mode
- Optional Low Voltage Detector (LVD)

■ USB (Universal Serial Bus) Interface

- DMA for low speed applications compliant with USB 1.5 Mbs (version 1.1) and HID specifications (version 1.0)
- Integrated 3.3 V voltage regulator and transceivers
- Suspend and Resume operations
- 3 Endpoints with programmable In/Out configuration

31 I/O Ports


- 8 high sink I/Os (10 mA at 1.3 V)
- 2 very high sink true open drain I/Os (25 mA at 1.5 V)
- 8 lines individually programmable as interrupt inputs

■ 2 Timers

- Programmable Watchdog
- 16-bit Timer with 2 Input Captures, 2 Output Compares, PWM output and clock input

■ 2 Communications Interfaces

Asynchronous Serial Communications Interface (on K4 and K2 versions only)

 I²C Multi Master Interface up to 400 kHz (on K4 versions only)

1 Analog Peripheral

- 8-bit A/D Converter (ADC) with 8 channels

■ Instruction Set

- 63 basic instructions
- 17 main addressing modes
- 8x8 unsigned multiply instruction
- True bit manipulation

■ Development Tools

Versatile Development Tools (under Windows) including assembler, linker, C-compiler, archiver, source level debugger, software library, hardware emulator, programming boards and gang programmers

Table 1. Device Summary

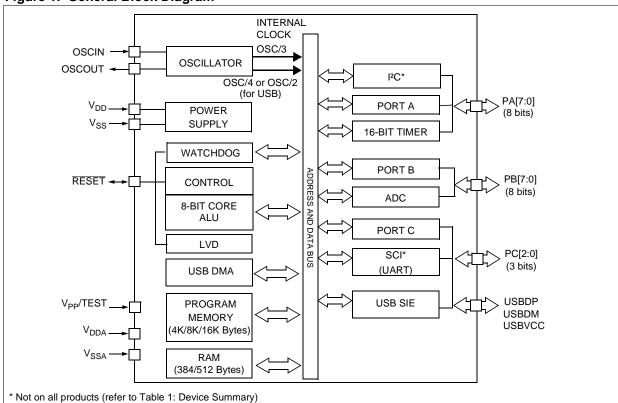
Features	ST72F63BK4	ST7263BK2	ST7263BK1					
Program Memory -bytes-	16K (Flash)	8K (Flash or ROM)	4K (Flash or ROM)					
RAM (stack) - bytes	512 (128) 384 (128)							
Peripherals	Watchdog timer, 16-bit timer, SCI, I ² C, ADC, USB	Watchdog timer, 16-bit timer, SCI, ADC, USB	Watchdog, 16-bit timer, ADC, USB					
Operating Supply		4.0 V to 5.5 V						
CPU frequency	8 MHz (with 24 MHz oscillator) or 4 MHz (with 12 MHz oscillator)							
Operating temperature	0 °C to +70 °C							
Packages		SO34/SDIP32						

Rev. 1.2

January 2001 1/6

1 INTRODUCTION

The ST7263B Microcontrollers form a sub-family of the ST7 MCUs dedicated to USB applications. The devices are based on an industry-standard 8bit core and feature an enhanced instruction set. They operate at a 24 MHz or 12 MHz oscillator frequency. Under software control, the ST7263B MCUs may be placed in either Wait or Halt modes, thus reducing power consumption. The enhanced instruction set and addressing modes afford real programming potential. In addition to standard 8bit data management, the ST7263B MCUs feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes. The devices include an ST7 Core, up to 16 Kbytes of program memory, up to 512 bytes of RAM, 19 I/O lines and the following on-chip peripherals:


 USB low speed interface with 3 endpoints with programmable in/out configuration using the DMA architecture with embedded 3.3V voltage regulator and transceivers (no external components are needed).

- 8-bit Analog-to-Digital converter (ADC) with 8 multiplexed analog inputs
- Industry standard asynchronous SCI serial interface (not on all products see Table 1 Device Summary)
- Watchdog
- 16-bit Timer featuring an External clock input, 2 Input Captures, 2 Output Compares with Pulse Generator capabilities
- Fast I²C Multi Master interface (not on all products see device summary)
- Low voltage reset (LVD) ensuring proper poweron or power-off of the device

All ST7263B MCUs are available in ROM or Flash versions.

Flash devices support programming in IAP mode (In-application programming) via the on-chip USB interface.

Figure 1. General Block Diagram

47

2 PIN DESCRIPTION

Figure 2. 34-Pin SO Package Pinout

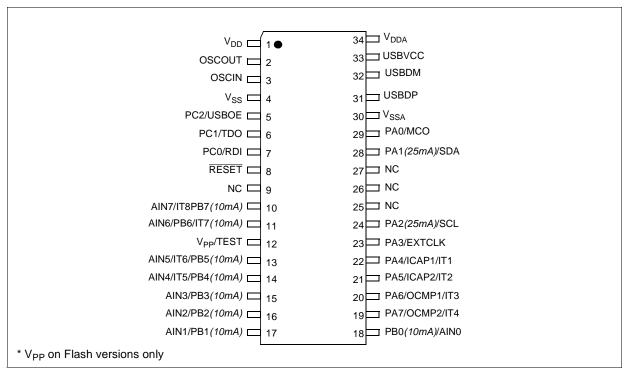
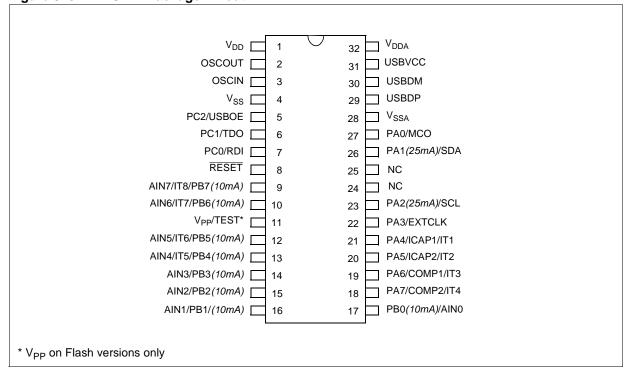



Figure 3. 32-Pin SDIP Package Pinout

47/

PIN DESCRIPTION (Cont'd)

RESET (see Note 1): Bidirectional. This active low signal forces the initialization of the MCU. This event is the top priority non maskable interrupt. This pin is switched low when the Watchdog is triggered or the V_{DD} is low. It can be used to reset external peripherals.

OSCIN/OSCOUT: Input/Output Oscillator pin. These pins connect a parallel-resonant crystal, or an external source, to the on-chip oscillator.

 $\mathbf{V_{DD}/V_{SS}}$ (see Note 2): Main Power Supply and Ground voltages.

 ${
m V_{DDA}/V_{SSA}}$ (see Note 2): Power Supply and Ground voltages for analog peripherals.

Alternate Functions: Several pins of the I/O ports assume software programmable alternate functions as shown in the pin description.

Note 1: Adding two 100 nF decoupling capacitors on the Reset pin (respectively connected to V_{DD} and V_{SS}) will significantly improve product electromagnetic susceptibility performance.

Note 2: To enhance the reliability of operation, it is recommended that V_{DDA} and V_{DD} be connected together on the application board. This also applies to V_{SSA} and V_{SS} .

Table 2. Device Pin Description

Pin n°				Level		Port / Control						Main		
32	34	Pin Name	Type	Ħ	out	Input Outpu			put	Main Function	Alternate Function			
SDIP32	SO34		-	Input	Output	float	ndw	int	ana	ОО	РР	(after reset)	 	
1	1	V _{DD}	S									Power supply	y voltage (4V - 5.5V)	
2	2	OSCOUT	0									Oscillator output		
3	3	OSCIN	1									Oscillator input		
4	4	V _{SS}	S									Digital ground		
5	5	PC2/USBOE	I/O		C _T		X				Χ	Port C2	USB Output Enable	
6	6	PC1/TDO	I/O		C _T		Х				Χ	Port C1	SCI Transmit Data Output*	
7	7	PC0/RDI	I/O		C _T		Х				Χ	Port C0	SCI Receive Data Input*	
8	8	RESET	I/O				X			Χ		Reset		
	9	NC										Not connected		
9	10	PB7/AIN7/IT8	I/O	C_{T}	10mA	X		Χ	Χ		Χ	Port B7	ADC analog input 7	
10	11	PB6/AIN6/IT7	I/O	C_{T}	10mA	X		Χ	Χ		Χ	Port B6	ADC analog input 6	
11	12	V _{PP} /TEST	S									Programming supply		
12	13	PB5/AIN5/IT6	I/O	C_{T}	10mA	X		Χ	Χ		Χ	Port B5	ADC analog input 5	
13	14	PB4/AIN4/IT5	I/O	C_{T}	10mA	X		Χ	Χ		Χ	Port B4	ADC analog input 4	
14	15	PB3/AIN3	I/O	C_{T}	10mA	X			Χ		Χ	Port B3	ADC analog input 3	
15	16	PB2/AIN2	I/O	C_{T}	10mA	X			Χ		Χ	Port B2	ADC analog input 2	
16	17	PB1/AIN1	I/O	C_{T}	10mA	X			Χ		Χ	Port B1	ADC analog input 1	
17	18	PB0/AIN0	I/O	C_{T}	10mA	X			Χ		Χ	Port B0	ADC Analog Input 0	
18	19	PA7/OCMP2/IT4	I/O		C _T		Х	Χ			Χ	Port A7	Timer Output Compare 2	
19	20	PA6/OCMP1/IT3	I/O		C _T		Х	Χ			Χ	Port A6 Timer Output Compare 1		
20	21	PA5/ICAP2/IT2	I/O		C _T		Х	Χ			Χ	Port A5 Timer Input Capture 2		
21	22	PA4/ICAP1/IT1	I/O		C _T		X	Χ			Χ	Port A4	Timer Input Capture 1	

4/6

Pin	n°			Level		Port / Control						Main		
32	34	Pin Name	Туре	Ŧ	out	Input				Output		Main Function	Alternate Function	
SDIP32	SO34		-	Input	Output	float	ndw	int	ana	ОО	ЬР	(after reset)		
22	23	PA3/EXTCLK	I/O		C _T		X				Х	Port A3	Timer External Clock	
23	24	PA2/SCL	I/O	C_{T}	25mA	Х				Т		Port A2	I ² C serial clock*	
	25	NC										Not connected		
24	26	NC										Not connected		
25	27	NC										Not connected		
26	28	PA1/SDA	I/O	C_{T}	25mA	Х				Т		Port A1 I ² C serial data*		
27	29	PA0/MCO	I/O		C _T			Χ			Χ	Port A0	Main Clock Output	
28	30	V _{SSA}	S									Analog ground		
29	31	USBDP	I/O									USB bidirectional data (data +)		
30	32	USBDM	I/O									USB bidirectional data (data -)		
31	33	USBVCC	0									USB power supply		
32	34	V_{DDA}	S									Analog supply voltage		

Note (*): if the peripheral is present on the device (see Table 1, "Device Summary")

Legend / Abbreviations for Table 2:

Type: I = input, O = output, S = supply

In/Output level: $C_T = CMOS \ 0.3V_{DD}/0.7V_{DD}$ with input trigger Output level: 10mA = 10mA high sink (on N-buffer only)

25mA = 25mA very high sink (on N-buffer only)

Port and control configuration:

Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog

Output: OD = open drain, PP = push-pull, T = True open drain

The RESET configuration of each pin is shown in **bold**. This configuration is kept as long as the device is under reset state.

47/

NI	1	'n	0	•

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©2001 STMicroelectronics - All Rights Reserved.

Purchase of I^2C Components by STMicroelectronics conveys a license under the Philips I^2C Patent. Rights to use these components in an I^2C system is granted provided that the system conforms to the I^2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com