574

ST7 FAMILY

PROGRAMMING MANUAL

INTRODUCTION

The ST7 family of HCMOS Microcontrollers has
been designed and built around an industry stand-
ard 8-bit core and a library of peripheral blocks,
which include ROM, EPROM, RAM, EEPROM, I/
O, Serial Interfaces (SPI, SCI, 12C,...), 16-bit Tim-
ers, etc. These blocks may be assembled in vari-
ous combinations in order to provide cost-effective
solutions for application dedicated products.

The ST7 family forms part of the STMicroelectron-
ics 8-bit MCU product line, and finds place in a
wide variety of applications such as automotive
systems, remote controls, video monitors, car ra-
dio and numerous other consumer, industrial, tel-
ecom, multimedia and automotive products.

ST7 ARCHITECTURE

The 8-bit ST7 Core is designed for high code effi-
ciency. It contains 6 internal registers, 17 main ad-
dressing modes and 63 instructions. The 6 inter-
nal registers include 2 Index registers, an Accu-
mulator, a 16-bit Program Counter, a Stack Point-
er and a Condition Code register. The two Index
registers X and Y enable Indexed Addressing
modes with or without offset, along with read-mod-
ify-write type data manipulations. These registers
simplify branching routines and data modifica-
tions.

The 16-bit Program Counter is able to address up
to 64K of ROM/EPROM memory. The 6-bit Stack
Pointer provides access to a 64-level Stack and
an upgrade to an 8-bit Stack Pointer is foreseen in
order to be able to manage a 256-level Stack. The
Core also includes a Condition Code Register pro-
viding 5 Condition Flags that indicate the result of
the last instruction executed.

March 1999

The 17 main Addressing modes, including Indirect
Relative and Indexed addressing, allow sophisti-
cated branching routines or CASE-type functions.
The Indexed Indirect Addressing mode, for in-
stance, permits look-up tables to be located any-
where in the address space, thus enabling very
flexible programming and compact C-based code.

The 63-instruction Instruction Set is 8-bit oriented
with a 2-byte average instruction size. This In-
struction Set offers, in addition to standard data
movement and logic/arithmetic functions, byte
multiplication, bit manipulation, data transfer be-
tween Stack and Accumulator (Push/Pop) with di-
rect stack access, as well as data transfer using
the X and Y registers.

Depending of the target device, different methods
of Interrupt priority management may be selected:
the number of Interrupt vectors can vary from 6 to
16, and the priority level may be managed by soft-
ware on some versions. Some peripherals include
Direct Memory Access (DMA) between serial in-
terfaces and memory.

Power-saving may be managed under program
control by placing the device in WAIT or HALT
mode.

A high test coverage is achieved for ST7 family
devices thanks to the use of an autotest method
based on "Cyclic Redundancy Checking" (CRC).
This approach is based on the analysis of a data
flow comprising not only input and output, but also
internal data, which affords a detailed inside view
of the behaviour of the core and of the peripherals.

Rev. 1.1

1/96

This is advanced information from STMicroelectronics. Details are subject to change without notice.

Table of Contents

INTRODUCTION 1 IRET 50
1 GLOSSARY ... e 5 P 51
2 ST7 CORE DESCRIPTION 6 JRA 52
2.1 INTRODUCTION . ..o\ 6 JRXX oo 53
LD .. 54
2.2 CPUREGISTERS 6 MUL © oo 57
3ST7 ADDRESSINGMODES 8 NEG 58
Inherent: 9 NOP ... 59
Immediate: 10 OR ... 60
Direct (short, long): 11 POP ... 61
Shortdirect: 12 PUSH it 62
Longdirect: 13 RCF ... 63
Indexed (no offset, short, long) 14 RET 64
(no offset) Indexed: 15 RIM ..o 65
ShortIndexed: 16 RLC .. 66
LongIndexed: 17 RRC 67
Indirect (short, long): 18 RSP ... 68
Short Indirect: 19 SBC ... 69
Long Indirect: 20 SCF .. 70
Indirect indexed (short, long): 21 SIM 71
Short indirect indexed: 22 SLA 72
Long indirectindexed: 24 SLL 73
Relative mode (direct, indirect): 26 SRA 74
Relative (Direct): 26 SRL 75
Relative Indirect: 28 SUB ... 76
4 ST7INSTRUCTIONSET 30 SWAP L
4.1 INTRODUCTION . 30 TNZ oo 78
TRAP .. 79
4.2 INSTRUCTION SET SUMMARY ... 31 WEL oo 80
ADC ... e 33 XOR ..o 81
ADD ... 34 5 SOFTWARE Library 82
AND 35 5.1 TIPS GENERAL TRICKS 83
sREs |73 5.2 DBSETIDBRES DYNAMICBIT
SET/RESET 84
BSET e 38
BTIF ottt 39 5.3 JMPCALLTBL, IMPLEMENTATION OF
BTIT oot 40 JUMP/CALL VECTOR TABLES 85
CALL 41 5.4 UNSIGNED WORD
CALLR 42 MULTIPLICATION 86
CLR ... 43 5.5 UNSIGNED LONG WORD BY
CP 44 WORDDIVISION 88
CPL .. 46 56 MIN/MAX. CHECK 91
DEC e 47
HALT oot 48 5.7 RANGE CHECK 93
INC ... 49
2/96

4

INTRODUCTION

ADDITIONAL BLOCKS

The additional blocks take the form of integrated
hardware peripherals arranged around the central
processor core. The following list details the fea-
tures of some of the currently available blocks:

ROM User ROM, in sizes up to 64K

EPROM EPROM based devices, same sizes
as ROM

Sizes up to several K byte

Sizes up to several K byte. Erase/pro-
gramming operations do not require
additional external power sources. Up
to 32 bytes can be programmed or
erased simultaneously.

Different versions based on a 16-bit
free running timer/counter are availa-
ble. They can be coupled with either
input captures, output compares or
PWM facilities.

Software programmable duty cycle
between 0% to 100% in up to 1024
steps. The outputs can be filtered to
provide D/A conversion.

A/D CONVERTER
The Analog to Digital Converter uses
a sample and hold technique. It has
an 8-bit range.

12C Multi/master, single master, single
slave modes, DMA or lbyte transfer,
standard and fast 12C modes, 7 and
10-bit addressing.

SPI The Serial peripheral Interface is a ful-
ly synchronous 4 wire interface ideal
for Master and Slave applications
such as driving devices with input shift
register (LCD driver, external memo-

ry,...).

RAM
EEPROM

TIMER

PWM

4

SCI The Serial Communication Interface is
a fast asynchronous interface which
features both duplex transmission,
NRz format, programmable baud
rates and standard error detection.
The SCI can also emulate RS232 pro-
tocol.

WATCHDOG
It has the ability to induce a full reset
of the MCU if its counter counts down
to zero prior to being reset by the soft-
ware. This feature is especially useful
in noisy applications.

I/O PORTS They are programmable from soft-
ware to act in several input or output
configurations on an individual line ba-
sis including high current and interrupt
generation. The basic block has eight
CMOS/TTL compatible lines.

LCD Liquid Crystal Display drive with sim-
ple addressing in RAM and drive ca-
pability from 1 to 16 multiplexing rates.

Static DAC True Digital to Analog Converter with
up to 12-bit resolution.

Complete DDC interface for "plug and
play" multimedia applications

SYNC PROC.
East/West deflection and synchroni-
zation processor for digital monitors.

Complete RDS decoder embedded in
the device for radio applications.

New blocks are continuously being added to the
peripheral block library to meet customers’ specific
needs with regard to the optimal integration level
in high volume projects.

DDC

RDS

3/96

INTRODUCTION

ST7 DEVELOPMENT SUPPORT

The ST7 family of MCUs is supported by a com-
prehensive range of development tools. This fam-
ily presently comprises hardware tools (emulators,
programmers), a software package (assembler-
linker, debugger, archiver) and a C-compiler de-
velopment tool.

The PC-compatible host system forms the plat-
form for the assembler/linker and for the symbolic
debugger; it also controls the emulator and ena-
bles object code to be downloaded through the
RS232 serial link.

The real-time emulator is connected through the
probe to the target application. It provides the
proper electrical connections, thus allowing dupli-
cation of the MCU'’s functions in the target system.
The user program can be executed in real time, in
step-by-step mode, or by stepping over call
modes.

Breakpoints can be included on instructions, on
memory addresses, on address ranges, on the
state of one of two output triggers, as well as in
trap mode (automatic reset). A logical analyser
mode can record four input signals as external
events, using a 1K x 32-bit trace and six recording
modes, with or without breakpoints. In addition,
two output signals are available for synchronisa-
tion and for timing measurement.

Each member of the ST7 family has an exclusive
probe, dedicated to the device and package. A re-
mote programming tool is available to program

4/96

EPROM and OTP devices independently
(Epromer) or by batches of 10 parts (Gang pro-
grammer).

The ST7 assembler is used to translate the source
code into relocatable machine code. It accepts a
source file written in ST7 assembly language and
transforms it into a linkable object file. The assem-
bler recognizes the use of symbols, macros and
conditional assembly directives. The ST7 linker/
loader combines a number of object files into a
single program, associating an absolute address
to each section of code. It generates a binary file,
containing the image of the ST7 EPROM or ROM
memory content. The ST7 library archiver main-
tains libraries of software object files. Libraries
may be used as entry for the linker/loader, togeth-
er with object files. This allows the user to develop
standard modules for repetitive use. The ST7 exe-
cutable file formatter is responsible for generating
an executable file. This file can be downloaded to
the emulator or, via the debugger, to the Eprom or
OTP device for evaluation and small volume pro-
duction with the programmer or sent to STMicroe-
lectronics for production of ROM parts.

A C-compiler development environment is also
available. It includes an editor, a compiler, a linker
a debugger and a simulator which are WindowsTM
compatible, and take full advantage of the ST7 ar-
chitecture to generate excellent quality code.

4

GLOSSARY

1 GLOSSARY

mnem mnemonic

src source

dst destination

cy duration of the instruction in CPU

Igth
op-code
mem

byte
short

long

EA
Page Zero
(XX)

XX
MS

4

clock cycles (internal clock)
length of the instruction in byte(s)

instruction byte(s) implementation
(1..4 bytes)

memory location

a byte

represent a short 8-bit addressing
mode

represent a long 16-bit addressing
mode

Effective Address: The final computed
data byte address

all data located at [00..FF] addressing
space (single byte address)

content of a memory location XX
a byte value

Most Significant Byte of a 16-bit value
(MSB)

LS Least Significant Byte of a 16-bit value
(LSB)
AAccumulator Register

X X Index Register

Y Y Index Register

reg A, X orY register

ndx index register, either X or Y

PC 16-bit Program Counter Register

SP 16-bit Stack Pointer

S Stack Pointer LSB

CcC Condition Code Register:

el fafrfrn]z]c]

For each instruction, we show how it affects the

CC flags:

Nothing Flag not affected
Flag NameFlag affected
OFlag cleared
1Flag set

Example:

H [C

0 1

See the Core Description for further details on the
CC Register content

5/96

ST7 CORE DESCRIPTION

2 ST7 CORE DESCRIPTION

2.1 INTRODUCTION

The CPU has a full 8-bit architecture. Six internal
registers allow efficient 8-bit data manipulations.
The CPU is able to execute 63 basic instructions.
It features 17 main addressing modes and can ad-
dress 6 internal registers.

2.2 CPU Registers

The 6 CPU registers are shown in the program-
ming model in Figure 1.. Following an interrupt,
the registers are pushed onto the stack in the or-
der shown in Figure 2.. They are popped from
stack in the reverse order. The Y register is not af-
fected by these automatic procedures. The inter-
rupt routine must therefore handle it, if needed,
through the POP and PUSH instructions.

Figure 1. Programming Mode

Accumulator (A). The accumulator is an 8-bit
general purpose register used to hold operands
and the results of the arithmetic and logic calcula-
tions as well as data manipulations.

Index Registers (X and Y). These 8-bit registers
are used to create effective addresses or as tem-
porary storage area for data manipulations. The
cross assembler generates a PRECEDE instruc-
tion (PRE) to indicate that the following instruction
refers to the Y register. The Y register is never au-
tomatically stacked. Interrupt routines must push
or pop it by using the POP and PUSH instructions.

Program Counter (PC). The program counter is a
16-bit register used to store the address of the
next instruction to be executed by the CPU. It is
automatically refreshed after each processed in-
struction. As a result, the ST7 core can access up
to 64 kb of memory.

7 0

ACCUMULATOR: HEEEEEEN

7 0

X INDEX REGISTER: HEEEEEEN

7 0

Y INDEX REGISTER: HEEEREEN

15 7 0

Procramcounter: | [[[[[[[[[T T 11 11T]

15 7 0

stackpowter: | | | [[[[[[[[11 [1]

76543210

CONDITION CODE REGISTER: (1] 1[H][1[N Z]C]
X = Undefined

VR01767D

6/96

4

ST7 CORE DESCRIPTION

Stack Pointer (SP):

The stack pointer is a 16-bit register. The 6 least
significant bits contain the address of the next free
location of the stack. The 10 most significant bits
are forced to a preset value. They are reserved for
future extension of ST72 family.

The stack is used to save the CPU context on sub-
routines calls or interrupts. The user can also di-
rectly use it through the POP and PUSH instruc-
tions.

After an MCU reset, or after the Reset Stack Point-
er instruction (RSP), the Stack Pointer is set to its
upper value. It is then decremented after data has
been pushed onto the stack and incremented after
data is popped from the stack. When the lower lim-
it is exceeded, the stack pointer wraps around to
the stack upper limit. The previously stored infor-
mation is then overwritten, and therefore lost.

A subroutine call occupies two locations and an in-
terrupt five locations.

Condition Code Register (CC):

The Condition Code register is a 5-bit register
which indicates the result of the instruction just ex-
ecuted as well as the state of the processor. These

per interrupt enable flag can be latched). This bit
can be set/reset by software and is automatically
set after reset or at the beginning of an interrupt
routine.

Negative (N):
When set to 1, this bit indicates that the result of

the last arithmetic, logical or data manipulation is
negative (i.e. the most significant bit is a logic 1).

Zero (2):
When set to 1, this bit indicates that the result of

the last arithmetic, logical or data manipulation is
zero.

Carry/Borrow (C):

When set, C indicates that a carry or borrow out of
the ALU occurred during the last arithmetic opera-
tion on the MSB operation result bit. This bit is also
affected during bit test, branch, shift, rotate and
load instructions. See ADD, ADC, SUB, SBC in-
structions. In bit test operations, C is the copy of
the tested bit. See BTJF, BTJT instructions. In shift
and rotates operations, the carry is updated. See
RRC, RLC, SRL, SLL, SRA instructions

This bit can be set/reset by S/IW

bits can be individually tested by a program and ~ Example: Addition:$B5 + $94 = "C" + $49 =
specified action taken as a result of their state. The $149
following paragraphs describe each bit. c ; 0
Half carry bit (H):
The H bit is set to 1 when a carry occurs between 0 1joj1jrjoj1jojt
the bits 3 and 4 of the ALU during an ADD or ADC
instruction. The H bit is useful in BCD arithmetic c 2 0
subroutines.
Interrupt mask (1): + 1]0j]0j1j0]1]0]O
When the | bit is set to 1, all interrupts are disa-
bled. Clearing this bit enables them. Interrupts re- c 7 0
quested while | is set, are latched and can be proc-
essed when | is cleared (only one interrupt request =1 o|j1|0|0|]1]|0]0]|1
Figure 2. Stacking Order
7 0 STACK
(PUSH)
1 1 1 H [N z C
INCREASING = DECREASING
> ACCUMULATOR o
MEMORY x 2 MEMORY
-]
ADDRESSES E X INDEX REGISTER i ADDRESSES
= =
PCH =
UNSTACK PCL
(POP)

4

7/96

ST7 ADDRESSING MODES

3 ST7 ADDRESSING MODES

The ST7 core features 17 different addressing
modes which can be classified in 7 main groups:

Addressing Mode Example
Inherent nop
Immediate Id A#$55
Direct ld A,$55
Indexed ld A,($55,X)
Indirect Id A,([$55],X)
Relative jrne loop

Bit operation bset byte#5

The ST7 Instruction set is designed to minimize
the number of required bytes per instruction: To do

Table 1. ST7 Addressing Mode Overview:

so, most of the addressing modes can be split in
two sub-modes called long and short:

- The long addressing mode is the most powerful
because it can reach any byte in the 64kb ad-
dressing space, but the instruction is bigger and
slower than the short addressing mode.

- The short addressing mode is less powerful be-
cause it can generally only access the page zero
(00..FF range), but the instruction size is more
compact, and faster. All memory to memory in-
structions are only working with short addressing
modes (CLR, CPL, NEG, BSET, BRES, BTJT,
BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA,
SWAP)

Both modes have pros and cons, but the program-
mer doesn’t need to choose which one is the best:
the ST7 Assembler will always choose the best
one.

Mode Syntax Destination Ptr adr Ptr size | Lgth
Inherent nop +0
Immediate Id A #$55 +1
Short Direct Id A,$10 00..FF +1
Long Direct Id A,$1000 0000..FFFF +2
No Offset Direct Indexed Id A,(X) 00..FF +0
Short Direct Indexed Id A,($10,X) 00..1FE +1
Long Direct Indexed Id A,($1000,X) 0000..FFFF +2
Short Indirect Id A,[$10] 00..FF 00..FF byte +2
Long Indirect Id A,[$10.w] 0000..FFFF 00..FF word +2
Short Indirect Indexed Id A,([$10],X) 00..1FE 00..FF byte +2
Long Indirect Indexed Id A,([$10.w],X) 0000..FFFF 00..FF word +2
Relative Direct jrne loop PC+/-127 +1
Relative Indirect jrne [$10] PC+/-127 00..FF byte +2
Bit Direct bset $10,#7 00..FF +1
Bit Indirect bset [$10],#7 00..FF 00..FF byte +2
Bit Direct Relative btjt $10,#7,skip 00..FF +2
Bit Indirect Relative btjt [$10],#7,skip 00..FF 00..FF byte +3
8/96 ﬁ

ST7 ADDRESSING MODES

Inherent:

All related instructions are single byte ones. The op-code fully specify all required information for the CPU
to process the operation. These instructions are single byte ones.

Example:
1000 98 rcf
1001 9D nop
Action: Do the operation:
Inherent Instruction Function
NOP No operation
TRAP S/W Interrupt
WFI Wait For Interrupt (Low Power Mode)
HALT Halt Oscillator (Lowest Power Mode)
RET Sub-routine Return
IRET Interrupt Sub-routine Return
SIM Set Interrupt Mask
RIM Reset Interrupt Mask
SCF Set Carry Flag
RCF Reset Carry Flag
RSP Reset Stack Pointer
LD Load
CLR Clear
PUSH/POP Push/Pop to/from the stack
INC/DEC Increment/Decrement
TNZ Test Negative or Zero
CPL, NEG 1 or 2 Complement
MUL Byte Multiplication
SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations
SWAP Swap Nibbles

4

9/96

ST7 ADDRESSING MODES

Immediate:

The required data byte to do the operation is following the op-code.

Immediate Instruction Function
LD Load
CP Compare
BCP Bit Compare
AND, OR, XOR Logical Operations

ADC, ADD, SUB, SBC

Arithmetic Operations

These are two byte instructions, one for the opcode and the other one for the immediate data byte.

Example:

1000 AEFF Id X #$FF
1002 A355 cp X, #$55
1004 A6F8 Id A#HSF8
Action: X =$FF

Compare (X, $55)

A =3$F8

Figure 3. Immediate Addressing Mode Example

Before Completion

A
S
: Steps to Determine
‘ Previous Value ‘ Effective Address
PC
LD A, #0F8h A6 O5BE <t ‘ O5BE ‘ PC = 05BE
E8 05BF PC =PC + 1 =05BF
05C0 EA=PC
New PC=PC +1
N ——— =05C0
After Completion
SN
Instruction Complete
A
‘ F8 ‘ A= (EA) = F8
A6 05BE New PC = 05CO
F8 05BF New PC
05C0 a— ‘ 05C0 ‘

VR02059A

10/96

4

ST7 ADDRESSING MODES

Direct (short, long):

Addressing mode Syntax EA formula Ptr Adr Ptr Size Dest adr
Short Direct (ptr) (ptr) op+1 Byte 00..FF
Long Direct (ptr) (ptr.w) op+1.2 Word 0000..FFFF

The required data byte to do the operation is found by its memory address, which follows the op-code.

The direct addressing mode is made of two sub-modes:

Available Long and Short Direct Instructions Function
LD Load
CP Compare
AND, OR, XOR Logical Operations
ADC, ADD, SUB, SBC Arithmetic Additions/Substractions operations
BCP Bit Compare

Short Direct Instructions Only Function

CLR Clear
INC, DEC Increment/Decrement
TNZ Test Negative or Zero
CPL, NEG 1 or 2 Complement
BSET, BRES Bit Operations
BTJT, BTJF Bit Test and Jump Operations
SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations
SWAP Swap Nibbles
CALL, JP Call or Jump subroutine

4

11/96

ST7 ADDRESSING MODES

Short direct:

The address is a byte, thus require only one byte after the op-code, but only allow 00..FF addressing

space.
Example:

004B 20 coeff dc.b$20
052D B64B Id A,coeff

Action: A = (coeff) = ($4B) = $20

Figure 4. Short Direct Addressing Mode Example

Before Completion
—
A
Coeff .byte 20h 20 004B Previous Value
PC
B6 052D -— 052D
LD A,Coeff 4B 052E
052F
EA 004B
After Completion
—
A
Coeff .byte 20h 20 004B - 20
B6 052D
LD A,Coeff 4B 052E New PC
052F -&—— 052F

Steps to Determine
Effective Address

PC = 052D
PC =PC +1=052E

EA =(PC)

= (4B + 0000)

= 004B

New PC = PC + 1 = 052F

Instruction Complete

A=(EA) =20
New PC = 052F

VR02059L

12/96

4

ST7 ADDRESSING MODES

Long direct:

The address is a word, thus allowing 64 kb addressing space, but requires 2 bytes after the op-code.

Example:
0409 C606E5 Id A,coeff
06E5 40 coeff dc.b$ 40

Action: A = (coeff) = ($06E5) = $40

Figure 5. Long Direct Addressing Mode Example

LD A,Coeff C6
06
E5
| |
| |
| |
| |
| |
Coeff .byte 040h 40
LD A,Coeff C6
06
E5
| |
|
‘ |
Coeff .byte 040h 40

PC
0409 0409 PC = 0409
040A] 06ES5 PC =PC + 1 = 040A
040B EA = (PC) : (PC+1) = 06E5
New PC = PC + 2 = 040C
040C
06E5 EA 06E5
After Completion
Instruction Complete
0409
A= (EA) =4
040A (EA) =40
0408 New PC New PC = 040C
A
06E5 —— B 40
VR02059B

Before Completion

A

Previous Value

Steps to Determine

Effective Address

4

13/96

ST7 ADDRESSING MODES

Indexed (no offset, short, long)

Addressing mode Syntax EA formula Ptr Adr Ptr Size Dest adr
No offset | Direct Indexed (ndx) (ndx) 00..FF
Short Direct Indexed (ptr,ndx) (ptr + ndx) op+1 Byte 00..1FE
Long Direct Indexed (ptr.w,ndx) (ptr.w + ndx) op+1.2 |Word 0000..FFFF

The required data byte to do the operation is found by its memory address, which is defined by the un-
signed addition of an index register (X or Y) with an offset which follows the op-code.

The indexed addressing mode is made of three sub-modes:

No Offset, Long and Short Indexed Instructions

Function

LD Load
CP Compare
AND, OR, XOR Logical Operations
ADC, ADD, SUB, SBC Arithmetic Additions/Substractions operations
BCP Bit Compare
No Offset and Short Indexed Instructions Only Function
CLR Clear
INC, DEC Increment/Decrement
TNZ Test Negative or Zero
CPL, NEG 1 or 2 Complement
BSET, BRES Bit Operations
BTJT, BTJF Bit Test and Jump Operations
SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations
SWAP Swap Nibbles
CALL, JP Call or Jump subroutine
14/96 /<72

ST7 ADDRESSING MODES

(no offset) Indexed:

There is no offset, (no extra byte after the op-code), but only allows 00..FF addressing space.

Example:

00B8 11223344
05F2 AEB8
05F4 F6

Action: X =table

A = (X) = (table) = ($B8) = $11

dc.w$1122, $3344
Id X #table
Id A,X)

Figure 6. No offset Indexed Addressing Mode Example

Table .word 1122

LD A,(X)

Table .word 1122

LD A,(X)

11

22

33

44

F6

11

22

33

44

F6

Previous Value Effective Address
00B8
X
PC = 05F4
B8 F EA = X + 0000 = 00B8
New PC = PC + 1 = 05F5
pPC
EA
B8 -
After Completion
A Instruction Complete
00B8 > 11
y A=(EA) =11
New PC = 05F5
B8
05F4 New PC
05F5 —-— 05F5

Before Completion

A

Steps to Determine

VR02059C

4

15/96

ST7 ADDRESSING MODES

Short Indexed:

The offset is a byte, thus require only one byte after the op-code, but only allow 00..1FE addressing

space.
Example:

0089 11223344 table
0759 AEO03

075B E689

Action: X=3

dc.1$11223344
Id X#3
Id A,(table,X)

A = (table, X) = ($89, X) = ($89, 3) = ($8C) = $44

Figure 7. Short Indexed - 8-bit offset - Addressing Mode Example

Table .long 11223344 11

22

33

44

LD A, (table,X) E6

89

Table .long 11223344 11

22

33

44

LD A, (table,X) E6

89

Before Completion

A
0089 ‘ Previous Value ‘
008A X
0088 ‘ 03 ‘
008C I
PC
0758 47‘ 075B ‘
075C —* *7
075D
Adder
|
EA| oosc |
After Completion
0089
008A A
0088 ﬁ 44 ‘
008C X
‘ 03 ‘
075B
075C New PC
075D 47‘ 075D

Steps to Determine
Effective Address

PC =075B
PC=PC+1=075C

EA = (PC) + X = 89 + 03 = 008C
New PC = PC + 1 = 075D

Instruction Complete

A= (EA) = 44
New PC = 075D

VR02059D

16/96

4

ST7 ADDRESSING MODES

Long Indexed:
The offset is a word, thus allowing 64 kb addressing space, but requires 2 bytes after the op-code.

Example:
0690 AEO2 Id X, #2
0692 D6077E Id A,(table,X)
077E BF table dc.b$BF
86 dc.b$86
DBCF dc.w$DBCF

Action: X=2
A = (table, X) = ($077E, X) = ($077E, 2) = ($0780) = $DB

Figure 8. Long Indexed - 16-bit offset - Addressing Mode Example

Before Completion

e
pC Steps to Determine
LD A, (table, X) D6 0692 - ‘ 0692 ‘ Effective Address
07 0693
:’7 PC = 0692
E 0694 X PC = PC + 1 = 0693
! ‘ 02 ‘ EA = (PC):(PC+1) + (X)
table . byte BF BF 077E A = 077E + 02 = 0780
86 077F ‘ Previous Value ‘ New PC = PC + 2 = 0695
DB 0780 v
CF 0781
Adder
EA ‘ 0780 ‘

After Completion

X Instruction Complete
LD A, (table, X) D6 0692 ‘ 02 ‘
A=(EA)=DB
o7 0693 New PC = 0695
7E 0694 New PC
0695 -—-— ‘ 0695 ‘
table . byte BF BF 077E

86 077F A
DB 0780 4% DB
CF 0781 VR02059E

4

17/96

ST7 ADDRESSING MODES

Indirect (short, long):

Addressing mode Syntax EA formula Ptr Adr Ptr Size Dest adr
Short Indirect ((ptn)) ((ptn) 00..FF Byte 00..FF
Long Indirect ((ptr.w)) ((ptr.w)) 00..FF Word 0000..FFFF

The required data byte to do the operation is found by its memory address, located in memory (pointer).
The pointer address follows the op-code. The indirect addressing mode is made of two sub-modes:

Available Long and Short Indirect Instructions Function
LD Load
CP Compare
AND, OR, XOR Logical Operations
ADC, ADD, SUB, SBC Arithmetic Additions/Substractions operations
BCP Bit Compare

Short Indirect Instructions Only Function
CLR Clear
INC, DEC Increment/Decrement
TNZ Test Negative or Zero
CPL, NEG 1 or 2 Complement
BSET, BRES Bit Operations
BTJT, BTJF Bit Test and Jump Operations
SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations
SWAP Swap Nibbles
CALL, JP Call or Jump subroutine
18/96 ﬁ

ST7 ADDRESSING MODES

Short Indirect:

The pointer address is a byte, the pointer size is a byte, thus allowing 00..FF addressing space, and re-

quires 1 byte after the op-code.

Example:

0020 42 var dc.b$42
004B 20 ptr dc.bvar
052D 92B64B Id A,[ptr]

Action: A= [ptr] = ((ptr)) = (($4B)) = ($20) = $42

Figure 9. Short Indirect Addressing Mode Example

Before Completion

Steps to Determine

var .byte 42h 42 0020 Effective Address
A
ptr .byte var 20 004B — Previous Value PC = 052D
PC = PC + 2 = 052F
PC
EA = (PC)
LD A [ptr] 92 052D w— 052D = (4B + 0000)
B6 052E = 0020
4B 052F New PC = PC + 1 = 0530
EA ‘ 0020 ‘
After Completion
A N —
A
var .byte 42h 42 0020 P 42 Instruction Complete
LD A, [ptr] 92 052D A= (EA) =42
B6 052E New PC = 0530
4B 052F New PC
- 0530
VR02059F
L~ —

4

19/96

ST7 ADDRESSING MODES

Long Indirect:

The pointer address is a byte, the pointer size is a word, thus allowing 64 kb addressing space, and re-
quires 1 byte after the op-code.

Example:

0040 42E5
0409 92C640
42E5 11

ptr

var

dc.wvar
Id A,[ptr.w]
dc.b$11

Action: A = [ptr.w] = ((ptr.w)) = (($40.w)) = ($42E5) = $11

Figure 10. Long Indirect Addressing Mode Example

ptr .word var

LD A, [ptr.w]

var.byte 011h

ptr .word var

LD A, [ptr.w]

var .byte 011h

—_— T

42 0040

E5 0041

92 0409

C6 040A

40 040B

| 1040C
| |
| |
| |

11 42E5
—_—

42 0040

E5 0041

92 0409

cé6 040A

40 040B

040C

11

Before Completion

Steps to Determine
Effective Address

A

PC = 0409

‘ Previous Value ‘
PC=PC+2=40B

PC
EA = ((PC)) :((PC)+1)
EA 42E5

After Completion

Instruction Complete

A= (EA) = 011h
New PC = 040C

New PC

- ‘ 040C ‘

|
|
|
|
‘ 42E5 4ﬁ 011h ‘ VR02059G

20/96

(572

ST7 ADDRESSING MODES

Indirect indexed (short, long):

Addressing mode Syntax EA formula Ptr Adr Ptr Size Dest adr
Short Indirect Indexed ([ptr],ndx) ((ptr) + ndx) 00..FF Byte 00..1FE
Long Indirect Indexed ([ptr.w],ndx) ((ptr.w) + ndx) 00..FF Word 0000..FFFF

This is a combination of indirect and short indexed addressing mode. The required data byte to do the op-
eration is found by its memory address, which is defined by the unsigned addition of an index register val-
ue (X or Y) with a pointer value located in memory. The pointer address follows the op-code.

The indirect indexed addressing mode is made of two sub-modes:

Long and Short Indirect Indexed Instructions Function
LD Load
CP Compare
AND, OR, XOR Logical Operations
ADC, ADD, SUB, SBC Arithmetic Additions/Substractions operations
BCP Bit Compare

Short Indirect Indexed Instructions Only Function

CLR Clear
INC, DEC Increment/Decrement
TNZ Test Negative or Zero
CPL, NEG 1 or 2 Complement
BSET, BRES Bit Operations
BTJT, BTJF Bit Test and Jump Operations
SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations
SWAP Swap Nibbles
CALL, JP Call or Jump subroutine

4

21/96

ST7 ADDRESSING MODES

Short indirect indexed:

The pointer address is a byte, the pointer size is a byte, thus allowing 00..1FE addressing space, and re-
quires 1 byte after the op-code.

Example:
0040
0041
0042
0043

0089

0759
075B

Action:

22/96

00
01
02
03

40

AEO3
92E689

X=3

A = ([ptr],X) = ((ptr) , X) = (($89), 3) = ($40, 3) = ($43) = 3

table

ptr

dc.b0,1,2,3

dc.btable

ld X#3
Id A,([ptr],X)

4

ST7 ADDRESSING MODES

Figure 11. Short Indirect Indexed Addressing Mode Example

Before Completion
table .byte 0,1,2,3 00 0040
01 0041 Steps to Determine
02 0042 Effective Address
03
0043 PC = 0758
A PC = PC + 2 = 075D
ptr .byte table 40 0089 ‘ Previous value ‘ EA = ((PC)) + X + 0000
X EA =40 + 3 = 0043
o3|
——
PC
‘ 075B ‘
LD A, ([ptr.B],X) 92 075B ﬁ
E6 075C
40 03
89 075D Adder
R
EA ‘ 0043 ‘
After Completion
table .byte 0,1,2,3 00 0040 .
Instruction Complete
01 0041
02 0042 A= (EA) =03
03 0043 New PC = 075E
ptr .byte table 40 0089
A
03 ‘
X
03 ‘
LD A, ([ptr.B],X) 92 075B
E6 075C
89 075D New PC
4—{ 075E VR02059H
R
177 23/96

ST7 ADDRESSING MODES

Long indirect indexed:

The pointer address is a byte, the pointer size is a word, thus allowing 64 kb addressing space, and re-
quires 1 byte after the op-code.

Example:
0089

0800

0690
0692

24/96

0800

10203040

AEO3
92D689

ptr

table

dc.wtable
dc.b$10,$20,%$30,$40

Id X#3
Id A,(ptr.w],X)
X=3

A = ([ptr.w],X) = ((ptr.w), X) = (($89.w), 3)
= ($0800,3) = ($0803) = $40

4

ST7 ADDRESSING MODES

Figure 12. Long Indirect Indexed Addressing Mode Example

Before Completion

ptr .word table 08 0089
00 008A Steps to Determine
PC Effective Address
LD A,([ptr-w],X) 92 0692 & 0692
PC = 0692
D6 0693 PC = PC + 2 = 0694
89 0694 X EA = ((PC)) : ((PC)*1) + X
| ‘ 03 ‘ EA = 0803
table .byte 10h,20h,30h,40h 10 800 A
20 801 ‘ Previous value ‘
30 802 | Y
40 800 03
e—— 803 Adder
EA 0803
After Completion
ptr .word table 08 0089 Instruction Complete
00 008A
X A=(EA)=40
New PC = 0695
LD A,([ptr.w],X) 92 0692 03
D6 0693
89 0694 New PC
0695 ®— 0695
table .byte 10h,20h,30h,40h 10 0800
20 0801
30 0802 A
40 0803 4% 40 VR02059|
N —

25/96

4

ST7 ADDRESSING MODES

Relative mode (direct, indirect):

Addressing mode Syntax EA formula Ptr Adr Ptr Size Dest adr
Direct Relative oft PC =PC + oft op+1 PC +/- 127
Indirect Relative [oft] PC =PC + (oft) 00..FF Byte PC +/- 127

This addressing mode is used to modify the PC register value, by adding an 8-bit signed offset to it.
The relative addressing mode is made of two sub-modes:

Available Relative Direct/Indirect Instructions Function

JRxx Conditional Jump

CALLR Call Relative

Relative (Direct):
The offset is following the op-code.

Example:

04A7 2717 jreqskip

04A9 9D nop

04AA 9D nop

04Co0 20FE skip jra * ; Infinite loop

Action: if (Z==1) thenPC = PC + $17 = $04A9 + $17 =3$04C0
elsePC = PC = $04A9

26/96

4

ST7 ADDRESSING MODES

Figure 13. Relative Direct Indexed Addressing Mode Example

_
JREQ SKIP 27 04A7
17 04A8
04A9
(e N Ve W
e
JREQ SKIP 27 04A7
17 04A8
04A9

JREQ SKIP

27 04A7

17 04A8

Before Completion

04A7

o
(@)
O N o)
-

Adder 04A7

Y

04A9

:

After Completion
(Branch taken)

zZ=1

IO
(@]
o

O

04A9

:

[N
-
I
—

| 049

Adder

New PC v

04CO0 EA

After Completion
(No Branch taken)

CcC
Z=0

New PC

04A9 <—| 04A9

Steps to Determine
Effective Address

PC = 04A7

PC =PC +1=04A8

TEMP = (PC) = 17

PC = PC +1 = 04A9

Stop here if there

is no Branch; i.e.,Z=0

EA =PC+TEMP

=04A9 + 17

=04C0

New PC = EA if Branch is taken

Instruction Complete

New PC = EA = 04C0

Instruction Complete

New PC = EA = 04A9

VR02059J

4

27/96

ST7 ADDRESSING MODES

Relative Indirect:
The offset is defined in memory, which address follows the op-code.

Example:

0089 50 offset dc.b$50
0800 922789 jreg[offset]
0803 9D nop

0853 9D nop

Relative Indirect Indexed Addressing Mode Example

28/96

4

ST7 ADDRESSING MODES

Before Completion

cc
offset .byte 050h 50 0089 Steps to Determine
| Effective Address
PC
JREQ [offset] 92 0800
0800 PC = PC +2 = 0802
27 0801 ¢ ¢ Temp = ((PC)) = 50
89 0802 PC = PC+1 =803
D E if branch taken
0803 EA=PC =853
| | v
| |
— EA 0803
9D 0853
After Completion
(Branch taken)
CcC
offset by’[e 050h 50 0089
! ‘ PC
JREQ [offset] 92 0800 0803
27 0801 ‘
89 0802
50 0803
9D 0803 adder

EA 0853

New PC

After Completion
(Branch not taken)

offset .byte 050h 50 0089

JREQ [offset] 92 0800

27 0801

89 0802

cC
Z=0
New PC
9D 0803 0803

VR02059K

4

29/96

ST7 INSTRUCTION SET

4 ST7 INSTRUCTION SET

4.1 INTRODUCTION

This chapter describes all the ST7 instructions. They are 63 and are described in alphabetical order. How-
ever, they can be classified in 13 main groups as follows:

Load and Transfer LD CLR

Stack operation PUSH | POP RSP

Increment/Decrement INC DEC

Compare and Tests CP TNZ BCP

Logical operations AND OR XOR CPL NEG

Bit Operation BSET BRES

Conditional Bit Test and Branch BTJT BTJF

Arithmetic operations ADC ADD SUB SBC MUL

Shift and Rotates SLL SRL SRA RLC RRC SWAP SLA
Unconditional Jump or Call JRA JRT JRF JP CALL | CALLR NOP | RET
Conditional Branch JRXX

Interruption management TRAP | WFI HALT | IRET

Code Condition Flag modification SIM RIM SCF RCF

Using a pre-byte

The instructions are described with one to four bytes.

In order to extend the number of available opcodes for an 8-bit CPU (256 op-codes), three different preb-
yte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

PC-2 End of previous instruction

PC-1 Prebyte

PC Op-code

PC+1 A((j:l((j:litional word (0 to 2) according to the number of bytes required to compute the effective
address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They
precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes

are:

PDY 90 Replace an X based instruction using immediate, direct, indexed or inherent addressing

mode by a Y one.

PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruc-
tion using the corresponding indirect addressing mode.
It also changes an instruction using X indexed addressing mode to an instruction using indi-

rect X indexed addressing mode.
PIY 91 Replace an instruction using indirect X indexed addressing mode by a Y one.

30/96

4

ST7 INSTRUCTION SET

4.2 INSTRUCTION SET SUMMARY

Mnemo Description Function/Example Dst Src N z C
ADC Add with Carry A=A+Mem+C A Mem N z C
ADD Addition A=A+Mem A Mem H N z Cc
AND Logical And A=A .Mem A Mem N z
BCP Bit compare A, Memory tst (A . Mem) A Mem N z
BRES Bit Reset bres Byte, #3 Mem
BSET Bit Set bset Byte, #3 Mem
BTJF Jump if bit is false (0) btjf Byte, #3, Jmpl Mem C
BTJT Jump if bit is true (1) btjt Byte, #3, Jmpl Mem C
CALL Call subroutine
CALLR | Call subroutine relative
CLR Clear reg, Mem 0 1
CP Arithmetic Compare tst(Reg - Mem) reg Mem N z C
CPL One Complement A =FFH-A reg, Mem N z 1
DEC Decrement decY reg, Mem N z
HALT Halt 0
IRET Interrupt routine return Pop CC, A, X, PC H | z C
INC Increment inc X reg, Mem
JP Absolute Jump jp [TBL.wW]
JRA Jump relative always
JRT Jump relative
JRF Never jump jrf *
JRIH Jump if Port INT pin=1 (no Port Interrupts)
JRIL Jum if Port INT pin =0 (Port interrupt)
JRH JumpifH=1 H=1?
JRNH JumpifH=0 H=07?
JRM Jumpifl=1 I=17?
JRNM Jumpifl=0 I=07?
JRMI Jump if N =1 (minus) N=17?
JRPL Jump if N =0 (plus) N=0?
JREQ Jump if Z =1 (equal) Z=17?
JRNE JumpifZ=0 (notequal) | Z=07?
JRC JumpifC=1 cC=17?
JRNC JumpifC=0 CcC=07?
JRULT | JumpifC=1 Unsigned <
JRUGE | JumpifC=0 Jmp if unsigned >=
JRUGT | Jumpif (C+2Z=0) Unsigned >
JRULE | Jumpif (C+2Z=1) Unsigned <=
IS72 31/96

ST7 INSTRUCTION SET

Mnemo Description Function/Example Dst Src N Z C
LD Load dst <= src reg, Mem | Mem, N 7

reg
MUL Multiply XA=X*A A XY XY, 0

A
NEG Negate (2's compl) neg $10 reg, Mem N z C
NOP No Operation
OR OR operation A=A+ Mem A Mem N z
POP Pop from the Stack pop reg reg Mem

pop CC CcC Mem N z c

PUSH Push onto the Stack push Y Mem reg,

CcC
RCF Reset carry flag Cc=0 0
RET Subroutine Return
RIM Enable Interrupts =0
RLC Rotate left true C C<=A<=C reg, Mem C
RRC Rotate right true C C=>A=>C reg, Mem C
RSP Reset Stack Pointer S = Max allowed
SBC Subtract with Carry A=A-Mem-C A Mem N z C
SCF Set carry flag c=1 1
SIM Disable Interrupts =1
SLA Shift left Arithmetic C<=A<=0 reg, Mem N z C
SLL Shift left Logic C<=A<=0 reg, Mem N z C
SRL Shift right Logic 0=>A=>C reg, Mem 0 4 C
SRA Shift right Arithmetic A7=>A=>C reg, Mem N 4 C
SUB Substraction A=A-Mem A Mem N z Cc
SWAP SWAP nibbles A7-Ad <=> A3-A0 reg, Mem N z
TNZ Test for Neg & Zero tnz Ibll N z
TRAP S/IW trap S/W interrupt
WFI Wait for Interrupt
XOR Exclusive OR A=A XOR Mem A M N z

32/96 ﬁ

ST7 INSTRUCTION SET

ADC

Syntax
Operation

Description

ADC

Addition with Carry

adc dst,src e.g.: adc A #$15
dst<=dst+src+C

The source byte, along with the carry flag, is added to the destination byte and the
result is stored in the destination byte. The source is a memory byte, and the

Instruction Overview:

destination is the A register.

mnem dst src
ADC A Mem
Condition Flags
Detailed Description:
dst src cy Igth Op-Code(s)
A #byte 2 2 A9 XX
A short 3 2 B9 XX
A long 4 3 C9 MS LS
A X) 3 1 F9
A (short,X) 4 2 E9 XX
A (long,X) 5 3 D9 MS LS
A (Y) 4 2 90 F9
A (short,Y) 5 3 90 E9 XX
A (long,Y) 6 4 90 D9 MS LS
A [short] 5 3 92 B9 XX
A [long.w] 6 3 92 C9 XX
A ([short],X) 6 3 92 E9 XX
A ([long.w],X) 7 3 92 D9 XX
A ([short],Y) 6 3 91 E9 XX
A ([long.w],Y) 7 3 91 D9 XX
See Also: ADD,SUB,SBC,MUL
‘ﬁ 33/96

ST7 INSTRUCTION SET

ADD

ADD

Addition
Syntax add dst,src e.g.: add A#%11001010
Operation dst <= dst + src
Description The source byte is added to the destination byte and the result is stored in the
destination byte. The source is a memory byte, and the destination is the A
register.
Instruction Overview
mnem dst src
ADD A Mem
Condition Flags
C
C
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 AB XX
A short 3 2 BB XX
A long 4 3 CB MS LS
A X) 3 1 FB
A (short,X) 4 2 EB XX
A (long,X) 5 3 DB MS LS
A (Y) 4 2 90 FB
A (short,Y) 5 3 90 EB XX
A (long,Y) 6 4 90 DB MS LS
A [short] 5 3 92 BB XX
A [long.w] 6 3 92 CB XX
A ([short],X) 6 3 92 EB XX
A ([long.w],X) 7 3 92 DB XX
A ([short],Y) 6 3 91 EB XX
A ([long.w],Y) 7 3 91 DB XX

See Also:ADC, SUB, SBC, MUL

34/96

4

ST7 INSTRUCTION SET

AND Logical AND

Syntax and dst,src e.g.: and A,#%00110101
Operation dst <= dst AND src
Description The source byte, is ANDed with the destination byte and the result is stored in the
destination byte. The source is a memory byte, and the destination is the A
register.
Truth Table:
AND 0 1
0 0 0
1 0 1

Instruction Overview

mnem dst src
AND A Mem
Condition Flags
H C
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 Ad XX
A short 3 2 B4 XX
A long 4 3 Cc4 MS LS
A (X) 3 1 F4
A (short,X) 4 2 E4 XX
A (long,X) 5 3 D4 MS LS
A) 4 2 90 F4
A (short,Y) 5 3 90 E4 XX
A (long,Y) 6 4 90 D4 MS LS
A [short] 5 3 92 B4 XX
A [long.w] 6 3 92 Cc4 XX
A ([short],X) 6 3 92 E4 XX
A ([long.w],X) 7 3 92 D4 XX
A ([short],Y) 6 3 91 E4 XX
A ([long.wl,Y) 7 3 91 D4 XX
See Also: OR, XOR, CPL, NEG

ﬁ 35/96

ST7 INSTRUCTION SET

BCP

Syntax bcp
Operation

Description

src,dst
{N, Z} <= src AND dst

The source byte, is ANDed to the destination byte. The result is lost but condition

e.g.

Logical Bit Compare

bcp

A,#%10100101

BCP

flags N and Z are updated accordingly. The source is a memory byte, and the
destination is A register. This instruction can be used to perform bit tests on A.

Instruction Overview

mnem dst src
BCP A Mem
Condition Flags
H C
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 A5 XX
A short 3 2 B5 XX
A long 4 3 C5 MS LS
A (X) 3 1 F5
A (short,X) 4 2 E5 XX
A (long,X) 5 3 D5 MS LS
A (Y) 4 2 90 F5
A (short,Y) 5 3 90 E5 XX
A (long,Y) 6 4 920 D5 MS LS
A [short] 5 3 92 B5 XX
A [long.w] 6 3 92 C5 XX
A ([short],X) 6 3 92 E5 XX
A ([long.w],X) 7 3 92 D5 XX
A ([short],Y) 6 3 91 E5 XX
A (long.w],Y) 7 3 91 D5 XX
See Also: CP, TNZ

36/96

4

ST7 INSTRUCTION SET

BRES

Syntax

Operation

Description

Instruction Overview

Bit Reset BRES

bres dst,#pos pos = [0..7] e.g.. bres PADR#6
dst <= dst AND (2**pos)

Read the destination byte, reset the corresponding bit (bit position), and write the
result in destination byte. The destination is a memory byte. The bit position is a
constant. This instruction is fast, compact, and does not affect any register. Very
useful for boolean variable manipulation.

mnem dst bit position
BRES Mem #pos
Condition Flags
H N Z C
Detailed Description
dst pos =0..7 cy Igth Op-Code(s)
short n = 11+2.pos 5 2 1n XX
[short] n = 11+2.pos 7 3 92 1n XX
See Also: BSET

4

37/96

ST7 INSTRUCTION SET

BSET

Syntax
Operation

Description

Instruction Overview

Bit Set BSET

bset dst,#pos pos = [0..7] e.g.. bset PADR#0
dst <= dst OR (2**pos)

Read the destination byte, set the corresponding bit (bit position), and write the
result in destination byte. The destination is a memory byte. The bit position is a
constant. This instruction is fast, compact, and does not affect any register. Very
useful for boolean variable manipulation.

mnem dst bit position
BSET Mem #pos
Condition Flags
H N Z C
Detailed Description
dst pos =0..7 cy Igth Op-Code(s)
short n = 10+2.pos 5 2 1in XX
[short] n = 10+2.pos 7 3 92 1n XX
See Also: BRES

38/96

4

ST7 INSTRUCTION SET

BTJF

Syntax
Operation

Description

Bit Test and Jump if False

btjf dst,#pos,rel
e.g.: btjf
PC=PC+3

pos = [0..7], rel is relative jump label
PADR,#3,skip

PC = PC + rel IF (dst AND (2**pos)) = 0

Read the destination byte, test the corresponding bit (bit position), and jump to
rel’ label if the bit is false (0), else continue the program to the next instruction.
The tested bit is saved in the C flag. The destination is a memory byte. The bit
position is a constant. The jump label points to an memory location around the
instruction (relative jump). This instruction is used for boolean variable
manipulation, H/W register flag tests, or I/O polling method. This instruction is
fast, compact, and does not affect any register. Very useful for boolean variable

BTJF

manipulation.
Instruction Overview
mnem dst bit position jump label
BTJF Mem #pos rel
Condition Flags
H N Z C
C
Detailed Description
dst pos =0..7 cy Igth Op-Code(s)
short n = 01+2.pos 5 3 on XX XX
[short] n = 01+2.pos 7 4 92 on XX XX
See also: BTJT
[’[39/96

ST7 INSTRUCTION SET

BTJT

Syntax
Operation

Description

Bit Test and Jump if True

BTJT

dst,#pos,rel pos = [0..7], rel is relative jump label

btjt
e.g.: btjt PADR,#7,skip
PC=PC+3

PC = PC + rel IF (dst AND (2**pos)) <> 0

Read the destination byte, test the corresponding bit (bit position), and jump to
rel’ label if the bitis true (1), else continue the program to the next instruction. The
tested bit is saved in the C flag. The destination is a memory byte. The bit position
is a constant. The jump label points to an memory location around the instruction
(relative jump). This instruction is used for boolean variable manipulation, H/W
register flag tests, or 1/0O polling method.

Instruction Overview

mnem dst bit position jump label
BTJT Mem #pos rel
Condition Flags
H N Z C
C
Detailed Description
dst pos =0..7 cy Igth Op-Code(s)
short n = 00+2.pos 5 3 on XX XX
[short] n = 00+2.pos 7 4 92 on XX XX
See Also: BTJF

40/96

4

ST7 INSTRUCTION SET

CALL

Syntax

Operation

Description

Instruction Overview

CALL Subroutine (Absolute) CALL

CALL dst e.g.: call divide32_16

PC = PC+Igth

(SP--) =LSB (PC)

(SP--) = MSB (PC)

PC = dst

The current PC register value is pushed onto the stack, then PC is loaded with the

destination address. This instruction should be used versus CALLR when
developing a program.

mnem dst
CALL Mem
Condition Flags
H N Z C
Detailed Description
dst cy Igth Op-Code(s)
short 5 2 BD XX
long 6 3 CD MS LS
(X) 5 1 FD
(short,X) 6 2 ED XX
(long,X) 7 3 DD MS LS
Y) 6 2 90 FD
(short,Y) 7 3 90 ED XX
(long,Y) 8 4 90 DD MS LS
[short] 7 3 92 BD XX
[long.w] 8 3 92 CD XX
([short],X) 8 3 92 ED XX
([long.wl],X) 9 3 92 DD XX
([short],Y) 8 3 91 ED XX
([long.wl,Y) 9 3 91 DD XX
See Also: CALLR, RET
[’[41/96

ST7 INSTRUCTION SET

CALLR

Syntax

Operation

Description

Instruction Overview

CALL Subroutine Relative CALLR

CALLR dst e.g.. callr chk_pol

PC = PC+Igth

(SP--) = LSB(PC)

(SP--) = MSB(PC)

PC = PC + dst

The current PC register value is pushed onto the stack, then PC is loaded with the

relative destination addresss.This instruction is used, once a program is
debugged, to shrink the overall program size.

mnem dst
CALLR Mem
Condition Flags
H N Z C
Detailed Description
dst cy Igth Op-Code(s)
short 2 AD XX
[short] 8 3 92 AD XX
See Also: CALL, RET
42/96 Iy,

ST7 INSTRUCTION SET

CLR

Syntax
Operation

Description

Instruction Overview

CLEAR CLR

clr dst e.g.: clr X
dst <= 00

The destination byte is forced to 00 value. The destination is either a memory byte
location, or a register. This instruction is compact, and does not affect any register
when used with RAM variables.

mnem dst
CLR Mem
CLR Reg
Condition Flags
H N Z C
0 1
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 4F
X 3 1 5F
Y 4 2 90 5F
short 5 2 3F XX
(X) 5 1 7F
(short,X) 6 2 6F XX
Y) 6 2 90 7F
(short,Y) 7 3 90 6F XX
[short] 7 3 92 3F XX
([short],X) 8 3 92 6F XX
([short],Y) 8 3 91 6F XX
See Also: LD

4

43/96

ST7 INSTRUCTION SET

CP

Syntax
Operation

Description

Compare C P

cp dst,src e.g.. cp A, (tbl,X)

{N, Z, C} = Test (dst - src)

The source byte is subtracted from the destination byte and the result is lost.
However, N, Z, C are updated according to the result. The destination is a
register, and the source is a memory byte. This instruction generally is placed just
before a conditional jump instruction.

Instruction Overview

mnem dst src
CP Reg Mem
Condition Flags
H
Detailed Description

dst src cy Igth Op-Code(s)
A #byte 2 2 Al XX
A short 3 2 B1 XX
A long 4 3 C1 MS LS
A (X) 3 1 F1
A (short,X) 4 2 E1l XX
A (long,X) 5 3 D1 MS LS
A (Y) 4 2 90 F1
A (short,Y) 5 3 90 E1l XX
A (long,Y) 6 4 90 D1 MS LS
A [short] 5 3 92 B1 XX
A [long.w] 6 3 92 C1l XX
A ([short],X) 6 3 92 E1l XX
A ([long.w],X) 7 3 92 D1 XX
A ([short],Y) 6 3 91 E1l XX
A ([long.w],Y) 7 3 91 D1 XX

44/96

(Continued on next page)

4

ST7 INSTRUCTION SET

CP Detailed Description (Cont'd)

dst src cy Igth Op-Code(s)

X #byte 2 2 A3 XX

X short 3 2 B3 XX

X long 4 3 C3 MS LS
X X) 3 1 F3

X (short,X) 4 2 E3 XX

X (long,X) 5 3 D3 MS LS
X [short] 5 3 92 B3 XX

X [long.w] 6 3 92 C3 XX

X ([short],X) 6 3 92 E3 XX

X ([long.w],X) 7 3 92 D3 XX
dst src cy Igth Op-Code(s)

Y #byte 3 3 90 A3 XX

Y short 4 3 90 B3 XX

Y long 5 4 90 C3 MS LS
Y) 4 2 90 F3

Y (short,Y) 5 3 920 E3 XX

Y (long,Y) 6 4 90 D3 MS LS
Y [short] 5 3 91 B3 XX

Y [long.w] 6 3 91 C3 XX

Y ([short],Y) 6 3 91 E3 XX

Y ([long.wl,Y) 7 3 91 D3 XX

See Also: TNZ, BCP
172 45/96

ST7 INSTRUCTION SET

CPL

Syntax
Operation

Description

Instruction Overview

cpl

Logical 1-Complement

e.g..
dst <= dst XOR FF, or FF - dst

cpl

X)

CPL

The destination byte is read, then each bit is toggled (inverted) and the result is
written at the destination byte. The destination is either a memory byte or a
register. This instruction is compact, and does not affect any register when used

with RAM variables.

mnem dst
CPL Mem
CPL Reg
Condition Flags
H C
1
1
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 43
X 3 1 53
Y 4 2 90 53
short 5 2 33 XX
(X) 5 1 73
(short,X) 6 2 63 XX
Y) 6 2 90 73
(short,Y) 7 3 90 63 XX
[short] 7 3 92 33 XX
([short],X) 8 3 92 63 XX
([short],Y) 8 3 91 63 XX
See Also: NEG, XOR, AND, OR
46/96

4

ST7 INSTRUCTION SET

DEC Decrement DEC

Syntax dec dst e.g.: dec Y
Operation dst<=dst-1
Description The destination byte is read, then decremented by one, and the result is written at

the destination byte. The destination is either a memory byte or a register. This
instruction is compact, and does not affect any register when used with RAM

variables.
Instruction Overview
mnem dst
DEC Mem
DEC Reg
Condition Flags
H C
N
Detailed description
dst cy Igth Op-Code(s)
A 3 1 4A
X 3 1 5A
Y 4 2 90 5A
short 5 2 3A XX
(X) 5 1 7A
(short,X) 6 2 6A XX
(Y) 6 2 90 7A
(short,Y) 7 3 90 6A XX
[short] 7 3 92 3A XX
([short],X) 8 3 92 6A XX
([short],Y) 8 3 91 6A XX
See Also: INC

47/96

4

ST7 INSTRUCTION SET

HALT

Syntax
Operation

Description

Instruction Overview

Condition Flags

Detailed Description

HALT Oscillator (CPU + Peripherals)

HALT

I = 0, The Oscillator is stopped till an interrupt occur.

HALT

The interrupt mask is reset, allowing interrupts to be fetched. Then the Oscillator
is stopped thus stopping the CPU and all internal peripherals, reducing the
microcontroller to its lowest possible power consumption. The micro will continue
the program upon an external interrupt, by restarting the oscillator (with 4096
clock cycles delay), and then, fetching the corresponding external interrupt, which

is generally either an 1/O interrupt or an external Reset.

mnem

HALT

cy Igth Op-Code(s)
2 1 8E
See Also: WFI

48/96

4

ST7 INSTRUCTION SET

INC

Syntax
Operation

Description

inc

dst<=dst+ 1

Increment

e.g.

inc counter

INC

The destination byte is read, then incremented by one, and the result is written at
the destination byte. The destination is either a memory byte or a register.This
instruction is compact, and does not affect any register when used with RAM

variables.
Instruction Overview
mnem dst
INC Mem
INC Reg
Condition Flags
H
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 4C
X 3 1 5C
Y 4 2 90 5C
short 5 2 3C XX
X) 5 1 7C
(short,X) 6 2 6C XX
Y) 6 2 90 7C
(short,Y) 7 3 90 6C XX
[short] 7 3 92 3C XX
([short],X) 8 3 92 6C XX
([short],Y) 8 3 91 6C XX
See Also: DEC

4

49/96

ST7 INSTRUCTION SET

|RET Interrupt Return |RET

Syntax IRET
Operation CcC = (++SP)
A = (++SP)
X = (++SP)
MSB (PC) = (++SP)
LSB (PC) = (++SP)
Description Placed at the end of an interrupt routine, return to the original program context

before the interrupt occurred. All registers which have been saved/pushed onto
the stack (Y excepted) are restored/popped.

Instruction Overview

mnem
IRET
Condition Flags
H [N (o
H [N (o
X: Condition Flags set or reset according to the first byte pulled from the stack
Detailed Description
cy Igth Op-Code(s)
9 1 | 80 | |
See Also: Interrupts, TRAP

4

50/96

ST7 INSTRUCTION SET

JP

Syntax
Operation

Description

Instruction Overview

Condition Flags

Detailed Description

dst

short

long

X)
(short,X)
(long,X)
(¥)
(short,Y)
(long,Y)
[short]

[long.w]
([short],X)
([long.w],X)
([short],Y)
([long.w],Y)

See Also:

4

Jump (absolute) \] P

ip dst e.g.. ip test
PC <=dst

The unconditional jump simply replaces the content of PC by dst. Control then
passes to the statement addressed by the program counter. This instruction
should be used instead of JRA during S/W development.

mnem dst
JP Mem
H N Z C

cy Igth Op-Code(s)

2 2 BC XX

3 3 CcC MS LS
2 1 FC

3 2 EC XX

4 3 DC MS LS
3 2 90 FC

4 3 90 EC XX

5 4 90 DC MS LS
4 3 92 BC XX

5 3 92 CcC XX

5 3 92 EC XX

6 3 92 DC XX

5 3 91 EC XX

6 3 91 DC XX

JRA
51/96

ST7 INSTRUCTION SET

JRA

Syntax
Operation

Description

Instruction Overview

Jump Relative Always \] RA

jra dst e.g.. jra loop
PC <= PC + dst

Unconditional relative jump. PC is updated by the signed addition of PC and dst.
Control then passes to the statement addressed by the program counter. This
instruction may be used, once the S/W debugged to fasten and shrink a program.

mnem dst
JRA Mem
Condition Flags
H N Z C

Detailed Description

dst cy Igth Op-Code(s)

rel 3 2 20 XX

[rel] 5 3 92 20 XX

See Also:

52/96

JP

4

ST7 INSTRUCTION SET

\] RXX Conditional Jump Relative Instruction \] RXX
Syntax JrXx dst e.g.. JrXx loop

Operation PC <= PC + dst if Condition is True

Description Conditional relative jump. PC is updated by the signed addition of PC and dst if

the condition is true. Control then passes to the statement addressed by the
program counter. Else, the program continues normally.

Instruction Overview

mnem dst
JRXX Mem
Condition Flags
H N Z C
Instruction List
mnem meaning sym Condition Op-Code (OC)
JRC Carry c=1 25
JREQ Equal = zZ=1 27
JRF False False 21
JRH Half-Carry H=1 29
JRIH Interrupt Line is High 2F
JRIL Interrupt Line is Low 2E
JRM Interrupt Mask =1 2D
JRMI Minus <0 N=1 2B
JRNC Not Carry C=0 24
JRNE Not Equal <>0 Z=0 26
JRNH Not Half-Carry H=0 28
JRNM Not Interrupt Mask =0 2C
JRPL Plus >=0 N=0 2A
JRT True True 20
JRUGE Unsigned Greater or Equal >= C=0 24
JRUGT Unsigned Greater Then > (Corz)=0 22
JRULE Unsigned Lower or Equal <= (Corz)=1 23
JRULT Unsigned Lower Than < c=1 25
Detailed Description
dst cy Igth Op-Code(s)
rel 3 2 ocC XX
[rel] 5 3 92 ocC XX

53/96

4

ST7 INSTRUCTION SET

L D Load

LD

Syntax Id dst,src e.g.. Id A #$15
Operation dst <= src
Description Load the destination byte with the source byte.
Instruction Overview
mnem dst src
LD reg mem
LD mem reg
LD reg reg
LD S reg
LD reg S
Condition Flags
H C
N
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 A6 XX
A short 3 2 B6 XX
A long 4 3 C6 MS LS
A (X) 3 1 F6
A (short,X) 4 2 E6 XX
A (long,X) 5 3 D6 MS LS
A (Y) 4 2 90 F6
A (short,Y) 5 3 90 E6 XX
A (long,Y) 6 4 90 D6 MS LS
A [short] 5 3 92 B6 XX
A [long.w] 6 3 92 C6 XX
A ([short],X) 6 3 92 E6 XX
A ([long.w],X) 7 3 92 D6 XX
A ([short],Y) 6 3 91 E6 XX
A ([long.w],Y) 7 3 91 D6 XX

54/96

4

ST7 INSTRUCTION SET

LD Detailed Description (Cont'd)

dst src cy Igth Op-Code(s)
short A 4 2 B7 XX
long A 5 3 Cc7 MS LS
X) A 4 1 F7
(short,X) A 5 2 E7 XX
(long,X) A 6 3 D7 MS LS
(Y) A 5 2 90 F7
(short,Y) A 6 3 90 E7 XX
(long,Y) A 7 4 90 D7 MS LS
[short] A 6 3 92 B7 XX
[long.w] A 7 3 92 c7 XX
([short],X) A 7 3 92 E7 XX
([long.w],X) A 8 3 92 D7 XX
(Ishort],Y) A 7 3 91 E7 XX
([long.wl,Y) A 8 3 91 D7 XX
dst src cy Igth Op-Code(s)
X #byte 2 2 AE XX
X short 3 2 BE XX
X long 4 3 CE MS LS
X (X) 3 1 FE
X (short,X) 4 2 EE XX
X (long,X) 5 3 DE MS LS
X [short] 5 3 92 BE XX
X [long.w] 6 3 92 CE XX
X ([short],X) 6 3 92 EE XX
X ([long.w],X) 7 3 92 DE XX
dst src cy Igth Op-Code(s)
short X 4 2 BF XX
long X 5 3 CF MS LS
X) X 4 1 ==
(short,X) X 5 2 EF XX
(long,X) X 6 3 DF MS LS
[short] X 6 3 92 BF XX
[long.w] X 7 3 92 CF XX
([short],X) X 7 3 92 EF XX
([long.wl],X) X 8 3 92 DF XX

b7

55/96

ST7 INSTRUCTION SET

LD Detailed Description (Cont'd)

dst src cy Igth

Y #byte 3 3

Y short 4 3

Y long 5 4

Y (Y) 4 2

Y (short,Y) 5 3

Y (long,Y) 6 4

Y [short] 5 3

Y [long.w] 6 3

Y ([short],Y) 6 3

Y ([long.w],Y) 7 3
dst src cy Igth

short Y 5 3

long Y 6 4

(¥) Y 5 2

(short,Y) Y 6 3

(long,Y) Y 7 4

[short] Y 6 3

[long.w] Y 7 3

([short],Y) Y 7 3

([long.w],Y) Y 8 3
dst src cy Igth

X A 2 1

A X 2 1

Y A 3 2

A Y 3 2

Y X 3 2

X Y 2 1

A S 2 1

S A 2 1

X S 2 1

S X 2 1

Y S 3 2

S Y 3 2

See Also: CLR

56/96

Op-Code(s)
90 AE XX
90 BE XX
90 CE MS LS
90 FE
90 EE XX
90 DE MS LS
91 BE XX
91 CE XX
91 EE XX
91 DE XX
Op-Code(s)
90 BF XX
90 CF MS LS
90 FF
90 EF XX
90 DF MS LS
91 BF XX
91 CF XX
91 EF XX
91 DF XX
Op-Code(s)
97
9F
90 97
90 9F
90 93
93
9E
95
96
94
90 96
90 94

4

ST7 INSTRUCTION SET

MUL Multiply (unsigned) MUL

Syntax mul dst,src e.g.: mul X,A
Operation dst:src <= dst x src
Description The source byte, is multiplied (unsigned), with the destination byte. The 16 bit

MSB word result is saved in dst location, and the LSB one in src location.

Instruction Overview

mnem dst src
MUL X:A X, A
MUL Y:A Y, A
Condition Flags
N Z C
0 0
Detailed Description
dst src cy Igth Op-Code(s)
X A 11 1 42
Y A 12 2 90 42
See Also: ADD, ADC, SUB, SBC

57/96

4

ST7 INSTRUCTION SET

NEG

Syntax
Operation

Description

Instruction Overview

Condition Flags

Detailed Description

dst

A
X
Y

short

X)
(short,X)
(Y)
(short,Y)
[short]
([short],X)
([short],Y)

See Also:

58/96

Negate (Logical 2-Complement) NEG

neg dst e.g.. neg X)
dst <= (dst XOR FF) + 1, or 00 - dst

The destination byte is read, then each bit is toggled (inverted), and the result is
incremented before it is written at the destination byte. The destination is either a
memory byte or a register. The Carry is cleared if the result is zero. This
instruction is used to negate signed values. This instruction is compact, and does
not affect any register when used with RAM variables.

mnem dst
NEG Mem
NEG Reg
H N C
C
C
cy Igth Op-Code(s)
3 1 40
3 1 50
4 2 90 50
5 2 30 XX
5 1 70
6 2 60 XX
6 2 90 70
7 3 90 60 XX
7 3 92 30 XX
8 3 92 60 XX
8 3 91 60 XX

CPL, AND, OR, XOR

4

ST7 INSTRUCTION SET

NOP No operation NOP

Syntax nop
Operation
Description Does nothing. This instruction can be used either to disable an instruction, or to

build a waiting delay.

Instruction Overview

mnem
NOP
Condition Flag
H N z (o
Detailed Description
cy Igth Op-Code(s)
2 1 | o | |
See Also: JRF

4

59/96

ST7 INSTRUCTION SET

OR

Logical OR

OR

Syntax or dst,src A, #%00110101
Operation dst <= dst OR src
Description The source byte, is ORed with the destination byte and the result is stored in the
destination byte. The source is a memory byte, and the destination is the
Accumulator register.
Truth Table
OR 0
0 0
1 1
Instruction Overview
mnem dst src
OR A Mem
Condition Flags
H
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 AA XX
A short 3 2 BA XX
A long 4 3 CA MS LS
A X) 3 1 FA
A (short,X) 4 2 EA XX
A (long,X) 5 3 DA MS LS
A) 4 2 90 FA
A (short,Y) 5 3 90 EA XX
A (long,Y) 6 4 90 DA MS LS
A [short] 5 3 92 BA XX
A [long.w] 6 3 92 CA XX
A ([short],X) 6 3 92 EA XX
A ([long.w],X) 7 3 92 DA XX
A ([short],Y) 6 3 91 EA XX
A ([long.w],Y) 7 3 91 DA XX
See Also: AND, XOR, CPL, NEG

60/96

4

ST7 INSTRUCTION SET

POP

Syntax
Operation

Description

Instruction Overview

Condition Flag

X:
Detailed Description
dst
X
Y
cC
See Also:

4

Pop from Stack POP

pop dst e.g.. pop CcC
dst <= (++SP)

Restore from the stack a data byte which will be placed in dst location. The stack
pointer is incremented by one. Use to restore a register value.

mnem dst
POP
POP X
POP Y
POP CcC
H N Z C
H N Z C

Load Condition Flag from the stack

cy Igth Op-Code(s)
4 1 84
4 1 85
5 2 90 85
4 1 86
PUSH, RSP

61/96

ST7 INSTRUCTION SET

PUSH

Syntax
Operation

Description

Instruction Overview

push
(SP--) <=dst

Save into the stack the dst byte location. The stack pointer is decremented by
one. Used to save a register value.

Push into the Stack

A

mnem dst
PUSH
PUSH X
PUSH Y
PUSH CcC
Condition Flag
H z
Detailed Description
dst cy Igth Op-Code(s)
3 1 88
X 3 1 89
Y 4 2 90 89
CcC 3 1 8A
See Also: POP, RSP

62/96

PUSH

4

ST7 INSTRUCTION SET

RCF Reset Carry Flag RCF

Syntax rcf
Operation c=0
Description Clear the carry flag of the CC register. May be used as a boolean used controlled
flags.
Instruction Overview
mnem
RCF
Condition Flags
H N z (o
0
Detailed Description
cy Igth Op-Code(s)
2 1 98
See Also: SCF

4

63/96

ST7 INSTRUCTION SET

RET

Syntax

Operation

Description

Instruction Overview

ret

Return from subroutine

MSB (PC) = (++SP)
LSB (PC) = (++SP)

Restore the PC from the stack. The stack pointer is incremented twice.This

instruction is the last one of a subroutine.

mnem
RET
Condition Flags
H N z
Detailed Description
cy Igth Op-Code(s)
6 1 I
See Also: CALL, CALLR
64/96

RET

4

ST7 INSTRUCTION SET

RIM Reset Interrupt Mask/Enable Interrupt R | M

Syntax rim
Operation 1=0
Description Clear the Interrupt mask of the CC register, which enable interrupts. This

instruction is generally put in the main program, after the reset routine, once all
desired interrupts have been properly configured. This instruction is not needed
before both WFI and HALT instructions.

Instruction Overview

mnem
RIM
Condition Flags
H [N z (o
0
Detailed Description
cy Igth Op-Code(s)
2 1 | oa | |
See Also: SIM

65/96

4

ST7 INSTRUCTION SET

RL C Rotate Left Logical through Carry RL C

Syntax ric dst e.g.. rlc X)
Operation
Description The destination is either a memory byte or a register. This instruction is compact,

and does not affect any register when used with RAM variables.

Instruction Overview

RLC Mem
RLC Reg
RLC Mem
Condition Flag |
H N C *
7| [c]={7] [[[o]
bit 7
Detailed Description <
dst cy Igth Op-Code(s)
A 3 1 49
X 3 1 59
Y 4 2 90 59
short 5 2 39 XX
(X) 5 1 79
(short,X) 6 2 69 XX
Y) 6 2 90 79
(short,Y) 7 3 90 69 XX
[short] 7 3 92 39 XX
([short],X) 8 3 92 69 XX
([short],Y) 8 3 91 69 XX
See Also: RRC, SLL, SRL, SRA, ADC, SWAP, SLA
66/96 I’[

ST7 INSTRUCTION SET

RRC Rotate Right Logical through Carry RRC

Syntax rrc dst e.g.. rrc X)
Operation
Description The destination is either a memory byte location or a register. This instruction is

compact, and does not affect any register when used with RAM variables.

Instruction Overview

mnem dst
RRC Mem
RRC Reg
Condition Flag v
H N C ‘
wo| [cle[7[[[o]
bit 0 -
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 46
X 3 1 56
Y 4 2 90 56
short 5 2 36 XX
(X) 5 1 76
(short,X) 6 2 66 XX
(¥) 6 2 90 76
(short,Y) 7 3 90 66 XX
[short] 7 3 92 36 XX
([short],X) 8 3 92 66 XX
([short],Y) 8 3 91 66 XX
See Also: RLC, SRL, SLL, SRA, SWAP, ADC, SLA
[’[67/96

ST7 INSTRUCTION SET

RSP

Syntax
Operation

Description

Trick

Instruction Overview

Reset Stack Pointer

rsp
SP = Reset Value

RSP

Reset the stack pointer to its reset initial value. This instruction may be put as first

executed instruction in the reset routine.

It may be used to test current stack size used with an ST7 independent program.

mnem
RSP
Condition Flags
H N z C
Detailed Description
cy Igth Op-Code(s)
2 1 9C
See Also: PUSH, POP
68/96

4

ST7 INSTRUCTION SET

S B C Substraction with Carry S B C

Syntax shc dst,src e.g.: sbc A #$15
Operation dst<=dst-src-C
Description The source byte, along with the carry flag, is subtracted from the destination byte

and the result is stored in the destination byte. The source is a memory byte, and
the destination is the A register.

Instruction Overview

mnem dst src
SBC A Mem
Condition Flags
H C
C
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 A2 XX
A short 3 2 B2 XX
A long 4 3 Cc2 MS LS
A (X) 3 1 F2
A (short,X) 4 2 E2 XX
A (long,X) 5 3 D2 MS LS
A (Y) 4 2 90 F2
A (short,Y) 5 3 90 E2 XX
A (long,Y) 6 4 90 D2 MS LS
A [short] 5 3 92 B2 XX
A [long.w] 6 3 92 Cc2 XX
A ([short],X) 6 3 92 E2 XX
A ([long.w],X) 7 3 92 D2 XX
A ([short],Y) 6 3 91 E2 XX
A ([long.w],Y) 7 3 91 D2 XX
See Also: ADD,SUB,SBC, MUL

69/96

4

ST7 INSTRUCTION SET

SCF

Syntax

Operation

Description

Instruction Overview

Set Carry Flag

scf
c=1

Set the carry flag of the CC register. It may be used as user controlled flag.

mnem
SCF
Condition Flags
H N z
Detailed Description
cy Igth Op-Code(s)
2 1 | 99 |
See Also: RCF
70/96

SCF

4

ST7 INSTRUCTION SET

Sl M Set Interrupt Mask/Disable Interrupt S”VI

Syntax sim
Operation =1
Description Set the Interrupt mask of the CC register, which disables interrupts. This

instruction is useless at the beginning of an interrupt/reset routine

Instruction Overview

mnem
SIM
Condition Flags
H [N z (o
1
Detailed Description
cy Igth Op-Code(s)
2 1 | s | |
See Also: RIM

4

71/96

ST7 INSTRUCTION SET

SLA Shift Left Arithmetic SLA

Syntax sla dst e.g.. sla X)

Operation

Description The destination is either a memory byte or a register.This instruction is equivalent
to SLL one.

Instruction Overview

mnem dst
SLA Mem
SLA Reg
Condition Flags
H N C
7| [cie[7] | | Joje]o]
bit 7
-
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 48
X 3 1 58
Y 4 2 90 58
short 5 2 38 XX
(X) 5 1 78
(short,X) 6 2 68 XX
Y) 6 2 90 78
(short,Y) 7 3 90 68 XX
[short] 7 3 92 38 XX
([short],X) 8 3 92 68 XX
([short],Y) 8 3 91 68 XX
See Also: SRL, SRA, RRC, RLC, SWAP, SLL
72196 &7

ST7 INSTRUCTION SET

SL L Shift Left Logical SL L

Syntax sli dst e.g.: sll X)

Operation

Description The destination is either a memory byte or a register.It double the affected value.
This instruction is compact, and does not affect any register when used with RAM
variables.

Instruction Overview

mnem dst
SLL Mem
SLL Reg
Condition Flags
H N Z C
vz 7| ({7] T Jote[o]
N Z bit 7
-
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 48
X 3 1 58
Y 4 2 90 58
short 5 2 38 XX
(X) 5 1 78
(short,X) 6 2 68 XX
(Y) 6 2 90 78
(short,Y) 7 3 90 68 XX
[short] 7 3 92 38 XX
([short],X) 8 3 92 68 XX
([short],Y) 8 3 91 68 XX
See Also: SLA, SRA, SRL, RRC, RLC, SWAP

4

73/96

ST7 INSTRUCTION SET

SRA

Syntax
Operation

Description

Instruction Overview

Condition Flags

Shift Right Arithmetic SRA

sra dst e.g.. sra X)

The destination is either a memory byte or a register.It perform an signed division
by 2: The sign bit 7 is not modified. This instruction is compact, and does not affect
any register when used with RAM variables.

mnem dst
SRA Mem
SRA Reg
H N C r‘
N | z |bito | 7 | | | | o [c |

N z bit 0

Detailed Description
dst cy Igth Op-Code(s)
A 3 1 47
X 3 1 57
Y 4 2 90 57
short 5 2 37 XX
X) 5 1 77
(short,X) 6 2 67 XX
() 6 2 90 77
(short,Y) 7 3 90 67 XX
[short] 7 3 92 37 XX
([short],X) 8 3 92 67 XX
([short],Y) 8 3 91 67 XX
See Also: SRL, SLL, RRC, RLC, SWAP
74196 /<72

ST7 INSTRUCTION SET

SRL Shift Right Logical SRL

Syntax srl dst e.g.. srl X)
Operation
Description The destination is either a memory byte or a register.Ilt perform an unsigned

division by 2.This instruction is compact, and does not affect any register when
used with RAM variables.

Instruction Overview

mnem dst
SRL Mem
SRL Reg
Condition Flags
H N C
so| o[1 1 Tole[c]
0 Z |bit0
|
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 44
X 3 1 54
Y 4 2 90 54
short 5 2 34 XX
(X) 5 1 74
(short,X) 6 2 64 XX
(Y) 6 2 90 74
(short,Y) 7 3 90 64 XX
[short] 7 3 92 34 XX
([short],X) 8 3 92 64 XX
([short],Y) 8 3 91 64 XX
See Also: RLC, RRC, SRL, SRA, SWAP, SLL

4

75/96

ST7 INSTRUCTION SET

SUB

Substraction

SUB

Syntax sub dst,src e.g.: sub A#%11001010
Operation dst <=dst - src
Description The source byte is subtracted from the destination byte and the result is stored in
the destination byte. The source is a memory byte, and the destination is the A
register.
Instruction Overview
mnem dst src
SUB A Mem
Condition Flags
H
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 A0 XX
A short 3 2 BO XX
A long 4 3 Co MS LS
A X) 3 1 FO
A (short,X) 4 2 EO XX
A (long,X) 5 3 DO MS LS
A (Y) 4 2 90 FO
A (short,Y) 5 3 90 EO XX
A (long,Y) 6 4 90 DO MS LS
A [short] 5 3 92 BO XX
A [long.w] 6 3 92 Co XX
A ([short],X) 6 3 92 EO XX
A ([long.w],X) 7 3 92 DO XX
A ([short],Y) 6 3 91 EO XX
A ([long.w],Y) 7 3 91 DO XX
See Also: ADD, ADC, SBC, MUL

76/96

4

ST7 INSTRUCTION SET

SWAP

Syntax
Operation

Description

Instruction Overview

Swap nibbles SWA P

swap dst e.g. swap counter

The destination byte upper and low nibbles are swapped over. The destination is
either a memory byte or a register.This instruction is compact, and does not affect
any register when used with RAM variables.

mnem dst
SWAP Mem
SWAP Reg
Condition Flags
H N C
N
N
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 4E
X 3 1 5E
Y 4 2 90 5E
short 5 2 3E XX
X) 5 1 7E
(short,X) 6 2 6E XX
Y) 6 2 90 7E
(short,Y) 7 3 90 6E XX
[short] 7 3 92 3E XX
([short],X) 8 3 92 6E XX
([short],Y) 8 3 91 6E XX
See Also: RRC, RLC, SLL, SRL, SRA

4

77196

ST7 INSTRUCTION SET

TNZ

Syntax
Operation

Description

Instruction Overview

tnz

dst
{N, Z} = Test(dst)

e.g.

Test for Negative or Zero

TNZ

The destination byte is tested and both N and Z flags are updated
accordingly.This instruction is compact, and does not affect any register when

used with RAM variables.

mnem dst
TNZ Mem
TNZ Reg
Condition Flags
H C
Detailed Description
dst cy Igth Op-Code(s)
A 3 1 4D
X 3 1 5D
Y 4 2 90 5D
short 4 2 3D XX
(X) 4 1 7D
(short,X) 5 2 6D XX
(Y) 5 2 90 7D
(short,Y) 6 3 90 6D XX
[short] 6 3 92 3D XX
([short],X) 7 3 92 6D XX
([short],Y) 7 3 91 6D XX
See Also: CP, BCP
78/96

4

ST7 INSTRUCTION SET

TRAP

Syntax

Operation

Description

Instruction Overview

Software Interrupt

TRAP

PC=PC+1

(SP--) = LSB (PC)
(SP--) = MSB (PC)
(SP--)=X

(SP--)=A
(SP--)=CC

PC = Vector Contents

TRAP

When processed, this instruction force the trap interrupt to occur and to be

processed. It cannot be masked by | flag.

mnem
TRAP
Condition Flags
H I N z C
1
Detailed Description
cy Igth Op-Code(s)
10 1 83
See Also: IRET
IS73

79/96

ST7 INSTRUCTION SET

WF' Wait for Interrupt (CPU Stopped, Low Power Mode) WF'

Syntax WEFI

Operation I =0, The CPU Clock is stopped till an interrupt occur. Internal Peripheral are still
running.

Description The interrupt flag is cleared, allowing interrupts to be fetched. Then the CPU clock

is stopped, reducing the microcontroller to a lower power consumption. The micro
will continue the program upon an internal or external interrupt.

Instruction Overview

mnem
WFI
Condition Flags
H [N z (o
0
Detailed Description
cy Igth Op-Code(s)
2 1 | sF | |
See Also: HALT

4

80/96

ST7 INSTRUCTION SET

XOR Logical Exclusive OR XOR

Syntax Xor dst,src e.g.. xor A#%00110101
Operation dst <= dst XOR src
Description The source byte, is XORed with the destination byte and the result is stored in the
destination byte. The source is a memory byte, and the destination is the A
register.
Truth Table
XOR 0 1
0 0
1 1 0

Instruction Overview

mnem dst src
XOR A Mem
Condition Flags
H C
Detailed Description
dst src cy Igth Op-Code(s)
A #byte 2 2 A8 XX
A short 3 2 B8 XX
A long 4 3 C8 MS LS
A (X) 3 1 F8
A (short,X) 4 2 E8 XX
A (long,X) 5 3 D8 MS LS
A) 4 2 90 F8
A (short,Y) 5 3 90 E8 XX
A (long,Y) 6 4 90 D8 MS LS
A [short] 5 3 92 B8 XX
A [long.w] 6 3 92 C8 XX
A ([short],X) 6 3 92 E8 XX
A ([long.wl],X) 7 3 92 D8 XX
A ([short],Y) 6 3 91 E8 XX
A ([long.wl,Y) 7 3 91 D8 XX
See Also: AND, OR, CPL, NEG

ﬁ 81/96

SOFTWARE Library

5 SOFTWARE Library

In order to simplify and hasten the development of any ST7 application, many useful standard routines are
shown in this chapter. They are general purpose ones, since they do not interact with any H/W cell. These
routines are split in 8 main groups:

Table of Contents:

5.1 Tips:
How to increment A up to XX?
How to decrement A down to XX?
How to convert A, (hex. value between $00 (0) and $63 (99)) to decimal?
How to deduce a parity bit of X content value? (returned in C)

5.2 Dynamic Bit Set/Reset

5.3 Implementation of jump call vector tables
5.4 Unsigned Word Multiplication

5.5 Unsigned Long Word by Word Division
5.6 Min./Max. Check

5.7 Range Check

4

82/96

SOFTWARE Library

5.1 TIPS GENERAL TRICKS

Trick 1:How to increment A up to XX?

clr
loopl cp
jreq
adc
jrnc

A ; A=00h.

A#18 ;18 is our example, you can take #XX.

exitl ; when A=#18, exit.

A#0 ; The advantage to use adc and not add (add A,#1) is
loopl ; that when A=#18, C=0 and A keeps the good value.

; The instruction jra is also possible.

Trick 2: How to decrement A down to XX?

exit 1
Id
loop2 cp
jreq
adc
jrc

exit 2

AH#HSFF ; A'is put at FF to be greater than #XX

A#SAS5 ; A5 is here our example, you can take any value #XX.
exit2 ; When A=#3$A5, exit.

AH#SFF

loop2 ; The instruction jra is also possible.

Trick 3: How to convert A, hexa value between $00 (0) and $63 (99) in decimal?

clr
temp sub
jrc
inc
jra
unit add
swap
OR

dec_nbr ; dec_nbr is the variable used to store the decimal number
A#10 ; each nibbles represent 2 decimal digits 0..9,0..9

unit

dec_nbr

temp

A#10 ; We add 10 because we substracted it one more time.
dec_nbr ; We put the number of tens in the MSB part.

A,dec_nbr ; A contains the rest, we add it with tens.

Trick 4: How to deduce a parity bit of X content value? (returned in C)

Id
clr
loop srl
adc
dec
jrme
srl

4

Y #8 ; Number of bits to shift.

A

X ; Unsigned division of X by 2

A#0 ; Ais equal to the number of 1 in X.

Y

loop ; Continue until Y=0.

A ;IfCarry=1, X noteven;if Carry=0, X even.

83/96

SOFTWARE Library

5.2 DBSET/DBRES, Dynamic Bit Set/Reset

Inputs: reg XThe byte address to manipulate
reg AThe bit position

Action: Set or Reset the bit number A (0..7) at byte address X
Output: No register modified
Variable definition:
WORDS
segment 'rom’
bittbl dc.b $01,$02,$04,$08,$10,$20,$40,$80
Program Listing:
WORDS

segment 'rom’

; Dynamic Bit set

.dbset push CC ; Push CC into the stack to save its value.
push A ; Push A into the stack to save its value.
and A#$07 ; To have a bit number between 0 and 7.
Id Y,A
Id A,(bittbl,Y) ; Point on the corresponding mask.
or A,(X)
Id (X),A ; Put the result at X address.
pop A ; Restore A from the stack.
pop CcC ; Restore CC from the stack.
ret

; Dynamic bit reset
.dbres push CC

push A

and A#$07

Id Y,A

Id A, (bittbl,Y)
cpl A

and A, (X)

Id (X),A

pop A

pop cC

ret

84/96

4

SOFTWARE Library

5.3 IMPCALLTBL, Implementation of jump/call vector tables

Inputs:

X
ptr

BYTEThe selected function (1)
WORDVector table address

()X = 00..7FJump Function[X]
X = 80..FFCall Function[X]

Action:Implement a function array (smallest and fastest way)

Variable definition:

WORDS
segment rom’
.ptr DC.W
.fn0 inc
ret
fnl srl
ret
.fn2 sll
ret
fn4 dec
ret
.null ret

Program Listing
JPCALLFNX

jump

4

sll
jrnc
call
nop
ret

push
Id
push
ret

fn0,fn1,fn2,null,fn4
X

X

jump ; If no overflow by shifting left X, jump.
jump

A,({ptr+1},X) ; Load of the address of the function
A ; to execute in A.

A, (ptr,X)

A

85/96

SOFTWARE Library

5.4 Unsigned Word Multiplication

; Multiplication A* B

; DATE : 21/11/96

; REVISION : V01.00

; SOFTWARE DESCRIPTION : This routine multiplies two 16 bit numbers
; A and B, the result is saved into four 8 bits

; registers (16x16= 32 bits)

; A and B >=0.

; OPERAND_B registers contain the number B.

; OUTPUT PARAMETERS : res registers contain the result.
BYTE : 63 bytes

;EXAMPLE : JFRRER program *rrkx
; Id A#$F3

; Id operand_a,A

; Id A#$D3

; Id {operand_a+1},A

; Id A #$FC

; Id operand_b,A

; Id A#$C3

; Id {operand_b+1}, A

; CALL multiw

; - do...

; - do...

: ;***** subroutine *****

; . multiw

; END

; INPUT PARAMETERS : OPERAND_A registers contain the number A.

86/96

4

SOFTWARE Library

.multiw

4

push A ; save Accumulator in stack
push X ; save X register in stack

Id X,operand_b i\

Id A,operand_a ;| Multiplies MSB operand
mul X,A ; /

Id res,X ;and store in the 2 MSB result registers
Id {res+1},A

Id X,{operand_a+1} ;\

Id A{operand_b+1} ; | Multiplies LSB operand
mul X,A o

Id {res+2},X ; and store in the 2 LSB result registers
Id {res+3},A

Id X,operand_a i\

Id A, {operand_b+1} ; | Multiplies cross operands
mul X,A o

add A, {res+2} ; Add to previous result

Id {res+2},A

Id A,X

adc A {res+1}

Id {res+1},A

Id Ares

adc A#0

Id res,A

Id X,operand_b i\

Id A{operand_a+1} ; | Multiplies cross operands
mul X,A o

add A, {res+2} ; Add to previous result

Id {res+2},A

Id A,X

adc A {res+1}

Id {res+1},A

Id Ares

adc A#0

Id res,A

pop X ; restore context before the CALL
pop A ; restore context before the CALL
ret ; and go back to main program

87/96

SOFTWARE Library

55 UnS|gned Long Word by Word Division

; DATE :
; REVISION :
;. SOFTWARE DESCRIPTION :

; INPUT PARAMETERS :

; INTERNAL PARAMETERS :

temporary value (32 b).

; OUTPUT PARAMETERS :

; BYTE :

; EXAMPLE :

Long by Word division A/B

22/11/96
V01.00

94 bytes

;***** program *kkkk

Id A #$0E

Id dividend,A

Id A#$DC

Id {dividend+1},A
Id A #$BA

Id {dividend+2},A
Id A,#$98

Id {dividend+3},A
Id A, #$AB

Id divisor,A

Id A, #$CD

Id {divisor+1},A
CALL div_Ixw

- do...

- do...

JFxRRx gubrouting *rkr*

. div_Ixw
END

This routine divides one 32 bits number A by
a 16-bit number B. The result is saved in two

registers.
Aand B >=0.

DIVIDEND registers contain the DIVIDEND (32 b).
DIVISOR registers contain the DIVISOR (16 b).

TEMPQUOT registers contain the QUOTIENT

QUOTIENT registers contain the result (16 b).

As the result is not stored on 32 bits, this
division is not valid in the general case.

88/96

4

SOFTWARE Library

div_Ixw
push A ; save Accumulator in stack
push X ; save X register in stack
Id X,#32 ; Initialization process
Id A#0 ; We use the load instruction
Id quotient,A ; which is faster than the
Id {quotient+1},A ; clear instruction for
Id tempquot,A ; multiple short datas.
Id {tempquot+1},A ; For a smaller code size
Id {tempquot+2},A ; you'd better use the clear
Id {tempquot+3},A ;instruction
.execute
sla {dividend+3} ;Shift left dividend with 32 leading Zeros
rlc {dividend+2}
rlc {dividend+1}
rlc dividend
rlc {tempquot+3}
rlc {tempquot+2}
rlc {tempquot+1}
rlc tempquot
sla {quotient+1} ; The result cannot be greater than 16 bits
rlc quotient ; SO we can shift left the quotient
Id A,tempquot ; Test is left dividend is greater or equal
or A {tempquot+1} ; to the divisor
jrne dividendlsgreater
Id A,{tempquot+2}
cp A,divisor
jrugt dividendlsgreater
jrult nosubstract
Id A,{tempquot+3}
cp A{divisor+1}
jrult nosubstract
.dividendlsgreater ; Subtract divisor from left dividend

4

Id A,{tempquot+3}
sub A {divisor+1}
Id {tempquot+3},A

89/96

SOFTWARE Library

.nosubtract

90/96

Id A,{tempquot+2}
sbc A,divisor
Id {tempquot+2},A

Id A,{tempquot+1}
sbc A#0
Id {tempquot+1},A

Id A,tempquot
sbc A#0
Id tempquot,A

inc {quotient+1} ; The result cannot be greater than 16 bits
jrne nosubstract ; SO we can increment the quotient

inc quotient

dec X ; Decrement loop counter

jrne execute ; if X = 0 then exit else continue

pop X ; restore context before the CALL

pop A ; restore context before the CALL

ret ; and go back to main program

4

SOFTWARE Library

5.6 Min./Max. Check

; CHECK MIN / MAX
; DATE :
; REVISION :

22/11/96

V01.00
; SOFTWARE DESCRIPTION : This routine tests if a 16 bit numbers value
; is within a predefined range.

; MIN =< DATA =< MAX

; INPUT PARAMETERS : DATA registers contain the number to test.
; MIN registers contain the minimum value.

; MAX registers contain the maximum value.

|

; OUTPUT PARAMETERS :
; C=1 means that the test has failed.
; BYTE : 32 bytes
; EXAMPLE :

; Id A #$25

; Id data,A

; Id A,#$00

; Id {data+1},A
; Id A#$00

; Id min,A

; Id A#$C3

; Id {min+1},A
; Id A#$CC

; Id max,A

; Id A#$05

; Id {max+1},A
; CALL check_min_max
; - do...

; - do...

: ;***** subroutine *****

; .check_min_max

; END

;***** program *kkkk

The C flag is updated according to the result.

4

91/96

SOFTWARE Library

.check_min_max

comp_min

in_range

push A ; save Accumulator in stack
push X ; save X register in stack
Id X,data ; get DATA MSB in X

Id A, {data+1} ; get DATALSB in A

cp X,max ; Compare MSB with MAX

jrugt out_of range ; if greater than exit

jrne comp_min ; else if equals compare LSB

cp A {max+1}

jrugt out_of range ; LSB greater than exit

cp X,min ; same thing with the LSB and the min value

jrult out_of _range
jrne in_range
cp A{min+1}
jrult out_of _range

out_of range

exit

92/96

rcf ; Value in range so reset C flag

jra exit ; the value is within the two values
scf ; Value out of range so set C flag
pop X ; restore context before the CALL
pop A ; restore context before the CALL
ret ; and go back to main program

4

SOFTWARE Library

5.7 Range Check

; DATE :

; NOTES:

; BYTE :

; INPUT PARAMETERS :

22/11/96

; REVISION : V01.00
; SOFTWARE DESCRIPTION :
is within a predefined range

MEDIAN - DELTA =< DATA =< MEDIAN + DELTA
DATA registers contain the number to test.
MEDIAN registers contain the median value.
DELTA registers contain the delta value to add
and subtract to the MEDIAN value.
The C flag is updated according to the result.
C=1 means that the test has failed.

This routine uses three previous sub routines.

; OUTPUT PARAMETERS :

check_min_max
addw
subw
66 bytes

; EXAMPLE : ;***** program *****

Id A#$25

Id data,A

Id A#$00

Id {data+1},A

Id A#$00

Id delta,A

Id A#$23

Id {delta+1} A

Id A#$CC

Id median,A

Id A#$05

Id {median+1} A
CALL check_range
- do...

- do...

;***** subroutine *****
.addw

.subw
.check_min_max
.check_range
END

CHECK RANGE for a WORD

This routine tests if a 16 bit numbers value

4

93/96

SOFTWARE Library

.check_range

no_ovfmax

94/96

push A

push X

Id A,{median+1}
add A {delta+1}
Id {res_add+1},A
Id A,median

adc A,delta

Id res_add,A

jrnc no_ovfmax
Id A#$FF

Id max,A

Id {max+1},A

Id A,res_add

Id max,A

Id A {res_add+1}
Id {max+1},A

Id A,{median+1}

; save Accumulator in stack
; save X register in stack
; get median’ LSB
; add delta’ LSB
; store LSB
; get median’ MSB
; add delta’ MSB with LSB’s carry
; store MSB

; test if an overflow occured
; if yes then the MAX value is set to FFFFh
; (saturation)

; else there is no overflow, then

; the computed value is the MAX value to keep.

; get median’ LSB

sub A {delta+1} ; sub delta’ LSB

Id {res_sub+1} A ; store LSB

Id A,median ; get median’ MSB

sbc A,delta ; sub delta’ MSB with LSB’s carry

Id res_sub,A ; store MSB

jrnc no_ovfmin ; test if an overflow occured

clr A ; if yes then the MIN value is set to 0000h
Id min,A ; (saturation)

Id {min+1},A

4

SOFTWARE Library

no_ovfmin
Id A,res_sub ; else there is no overflow, then
Id min,A ; the computed value is the MIN value to keep.
Id A,{res_sub+1}
Id {min+1},A
push A ; save Accumulator in stack
push X ; save X register in stack

call check_min_max ; Then we check if the value is within the range
; set by max and min.

pop A ; restore context before the CALL
pop X ; restore context before the CALL
ret ; The result depends of the C flag.

"THE CODE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
01999 STMicroelectronics - All Rights Reserved.

Purchase of I°C Components by STMicroelectronics conveys a license under the Philips I12C Patent. Rights to use these components in an
12C system is granted provided that the system conforms to the 1°C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain
Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

4

95/96

SOFTWARE Library

96/96

4

	ST7 FAMILY
	INTRODUCTION
	1 GLOSSARY
	2 ST7 CORE DESCRIPTION
	2.1 Introduction
	2.2 CPU Registers

	3 ST7 ADDRESSING MODES
	4 ST7 INSTRUCTION SET
	4.1 INTRODUCTION
	4.2 INSTRUCTION SET SUMMARY
	ADC
	ADD
	AND
	BCP
	BRES
	BSET
	BTJF
	BTJT
	CALL
	CALLR
	CLR
	CP
	CPL
	DEC
	HALT
	INC
	IRET
	JP
	JRA
	JRxx
	LD
	MUL
	NEG
	NOP
	OR
	POP
	PUSH
	RCF
	RET
	RIM
	RLC
	RRC
	RSP
	SBC
	SCF
	SIM
	SLA
	SLL
	SRA
	SRL
	SUB
	SWAP
	TNZ
	TRAP
	WFI
	XOR

	5 SOFTWARE Library
	5.1 TIPS GENERAL TRICKS
	5.2 DBSET/DBRES, Dynamic Bit Set/Reset
	5.3 JMPCALLTBL, Implementation of jump/call vector tables
	5.4 Unsigned Word Multiplication
	5.5 Unsigned Long Word by Word Division
	5.6 Min./Max. Check
	5.7 Range Check

