
ST52T420/E420
8-BIT DuaLogic MCU WITH 4K BYTES OTP/EPROM,

128 BYTES RAM, WDG, ADC, 3 TIMER/PWM DRIVERS
PRELIMINARY DATA

Digital Microcontroller with Fuzzy capabilities,
4 kbytes internal EPROM, 128 bytes of Data
RAM

On-chip 8 bit A/D Converter with an 8-channel
multiplexer .

19 Configurable I/O PINs.

Hardware multiplication and division.

Two Programmable Timer/PWM with internal
16-bit Prescaler, featuring:
- PWM output and Pulse generator mode
- Complementary Outputs

One Programmable Timer/PWM with internal
16-bit Prescaler, featuring:
- 1 Input capture
- 1 Output compare
- External / Internal Clock
- PWM output and Pulse generator mode
- Complementary Outputs

Watchdog timer.

Capability to perform boolean, arithmetic
operations and fuzzy algorithms.

46 basic instructions.

Power Saving Features.

Software tools and Emulators availability

EPROM readout protection

28 pin Plastic Package

January 2001

This is a preliminary data sheet on a new product now in development or undergoing evaluation. Details are subject to change without notice

Features ST52x420G0 ST52x420G1 ST52x420G2

Program Memory - bytes 1k 2k 4k

RAM - bytes 128

PWM / TIMER 3

ADC 8 channels / 8 bit

Other Peripherals Watchdog

Operating Supply 3 to 5.5 V

CPU frequency up to 20 Mhz

Temperature reange -45 to +85 °C

Packages PDIP28 - PSO28 - CDIP28W

1/120

GENERAL DESCRIPTION
ST52x420 is a member of the ST52xxx family of
8-bit DuaLogic microcontrollers.
It is available in different versions, depending on
memory size and peripheral.
ST52x420 is able to perform, in an efficient way,
both boolean and fuzzy algorithms, in order to
reach the best performances that the two
methodolog ies a l low. I t is produced by
STMicroelectronics using the reliable high
performance CMOSM6XE (O.5µm) process.
Thanks to Fuzzy Logic, ST52x420 allows to
describe a problem using a linguistic model instead
of a mathematical model. In this way it is very useful
and easy to modelize complex systems with very
high accuracy.
The linguistic approach is based on a set of
IF-THEN rules, describing the control behaviour,
and on Membership Functions associated to input
and output variables.
Fuzzy Inference is a set of operations which
computes the output values according with the
truth values of the involved rules.
The flexible I/O configuration of ST52x420 allows
to interface with a wide range of external devices,
like D/A converters or power control devices.
ST52x420 pins are configurable, allowing to set the
input, or output, signals on each single pin, as
shown in figures 1.3 and 1.4.

The OTP (One Time Programmable) device is fully
compatible with the EPROM windowed version,
which may be used for the prototyping and
pre-production phases of development.
The EPROM memory can be locked by user to
avoid external operations.
It is possible to perform operations on data stored
in the RAM (128 bytes), allowing to directly
combine new inputs and feedback signals.
It is possible to store up to 341 Membership
Functions, with triangular and trapezoidal shapes,
or singleton values.
Three TIMER/PWM drivers allow to manage power
devices and timing signals, implementing different
operating modes and high frequency PWM (Pulse
Width Modulation) controls.
One of these programmable timers, with Internal
Prescaler, can use in ternal or external
START/STOP signals and clock.
An internal programmable watchdog is available to
avoid loop errors and reset the microcontroller.
In order to reduce the energy consumption,
ST52x420 is able to perform two different power
saving features : Wait mode and Halt mode.

The EPROM contains the microcontroller
configuration, in terms of I/O number, microcode,
Fuzzy Rules and Membership Functions (MFs).
ST52x420 processes inputs and produces the
related outputs according to the configuration
loaded during the programming phase (stored into
the EPROM).
ST52x420 includes an 8-bit Analog to Digital
C o n v e r t e r w i t h a n 8 - a n a l o g c h a n n e l
Multiplexer.
A powerful development environment consisting of
board and software allows an easy configuration
and use of ST52x420.
It is possible to perform 16 bit over 8 bit arithmetical
divisions, with 8 bit result and 8 bit remainder, and
8 bit by 8 bit arithmetical multiplications, with 16 bit
result.
ST52x420 is fully supported by FUZZYSTUDIOTM4
allowing to graphically design a project and obtain
an optimized microcode.
ST52x420 exploits a STMicroelectronics patented
strategy to store the MFs in its internal memory.

FUNCTIONAL DESCRIPTION
ST52x420 works in two modes according to the
control signal level.
ST52x420 is a programmable product and its
functionment phases are:

Memory Programming Phase

Working Phase
These phases are selected by using the following
signals (see pins description):

RESET

TEST

VPP

Memory Programming Phase
ST52x420 memory is loaded in Memory
Programming Phase. All fuzzy and standard
instructions are written inside the memory.
This phase starts with the setting of the control
signals as follows:
RESET=Vss
TEST=Vss
VPP=12 V
When this phase starts, ST52x420 core is set to
the RESET status. This allows to program and/or
to test the internal Eprom. The signal INC_ADD is
used to increment the address of the memory (see
Eprom programming).

2/120

ST52T420/E420

ALU &
FUZZY CORE

INTERNAL BUS

CONTROL
 UNIT

SW
 WATCHDOG

128 bytes
 RAM

OSCILLATOR

A/D
 CONVERTER

I/O PARALLEL
PORT

UP TO
4 kbyte
EPROM

TIMER
PWM

0

TIMER
PWM

1

TIMER
PWM

2

Figure 1.1 ST52x420 Architectural Block Diagram

Working Mode

In this mode the control signals are the following :

RESET=VDD

TEST=Vss

VPP=Vss

The processor starts the working phase following
the instructions which have been previously loaded
in the memory.

Figure 1.2 shows the internal structure of
ST52x420. It is composed by one computational
block: the CONTROL UNIT (CU) / DPU block,
which allows the implementation of the fuzzy
calculus and the performing of boolean functions.

The CU/DPU is able to manage up to 341 different
Membership Functions for the fuzzy rules
antecedent part. The rules consequents are "crisp"
values (real numbers). The number of possible
rules is related with the dimensions of the
implemented standard algorithm. Smaller standard
algorithms allow to define bigger fuzzy algorithms
with more rules and viceversa. The 4 kbytes of the
Eprom are then shared between fuzzy and
standard algorithms.

The Control Unit (CU) reads the information and
the status incoming from the peripherals.
The arithmetic calculus can be performed on these
values by using the internal CU and the 128 bytes
RAM, which supports all computations.
The inputs of the peripherals can be the fuzzy
and/or arithmetic outputs, or the values contained
in Data RAM and EPROM locations.

3/120

ST52T420/E420

A/D

CONVERTER

RAM

EPROM

PWM/TIMER 0

WATCHDOG

TIMER

POWER SUPPLY OSCILLATOR RESET

CONTROL

AND

4 KBytes

OSCin OSCout RESET

128 Bytes

PB0..PB7

DPU

UNIT

PORT A

PORT B

PORT C

PWM/TIMER 2

PWM/TIMER 1

PA0..PA7

PC0..PC3

VDD VPP VSS VDDA GNDA

Output
Registers

Input
Registers

PORT_A
PORT_B
PORT_C
PWM_0_COUNT
PWM_0_RELOAD
PWM_1_COUNT
PWM_1_RELOAD
PWM_2_COUNT
PWM_2_RELOAD

STACK_POINTER
CHAN 0
CHAN 1
CHAN 2
CHAN 3
CHAN 4
CHAN 5
CHAN 6
CHAN 7
PORT_A
PORT_B
PORT_C
PWM_0_COUNT
PWM_0_STATUS
PWM_1_COUNT
PWM_1_STATUS
PWM_2_COUNT
PWM_2_STATUS

REG_CONF 0
 - - - - - - - - - -
 - - - - - - - - - -
REG_CONF 16

Configuration
Registers

Figure 1.2 ST52x420 Block Diagram

4/120

ST52T420/E420

VDD

Vss

PA0/T0RES

PA1/T0OUT

PA2/T1OUT

PA3/T2OUT

28

27

25

24

23

22

21

20

19

1

2

3

7

4

5

6

8

9

10

26

PA4/T0STRT

PA5/T0CLK

PA6

GNDA

T1OUT/PC2

T0OUT/PC1

INT/PC0

TEST

OSCIN

OSCOUT

RESET

PA7/PB7/Ain7

VPP

T2OUT/PC3

18

17

11

12

16

15

13

14

Ain3/PB3

VDDA

PB6/Ain6

PB5/Ain5

PB4/Ain4

Ain2/PB2

Ain1/PB1

Ain0/PB0

Figure 1.3a. ST52X420 SO28 Pin Configuration

28

27

25

24

23

22

21

20

19

1

2

3

7

4

5

6

8

9

10

26

18

17

11

12

16

15

13

14

VDD

Vss

PA0/T0RES

PA1/T0OUT

PA2/T1OUT

PA3/T2OUT

PA4/T0STRT

PA5/T0CLK

PA6

GNDA

T1OUT/PC2

T0OUT/PC1

INT/PC0

TEST

OSCIN

OSCOUT

RESET

PA7/PB7/Ain7

VPP

T2OUT/PC3

Ain3/PB3

VDDA

PB6/Ain6

PB5/Ain5

PB4/Ain4

Ain2/PB2

Ain1/PB1

Ain0/PB0

Figure 1.4a. ST52X420 DIP28 Pin Configuration

5/120

ST52T420/E420

PIN NAME TYPE Programming Phase Working Phase

1 RESET I General Reset General Reset

2 OSCOUT Oscillator Output Oscillator Output

3 OSCIN Oscillator Input Oscillator Input

4 TEST Test Mode Selector Test Mode Selector

5 INT / PC0 I/O PHASE signal External interrupt / Digital I/O

6 T0OUT / PC1 I/O Timer/PWM 0 output / Digital I/O

7 T1OUT / PC2 I/O Timer/PWM 1 output / Digital I/O

8 T2OUT / PC3 I/O Timer/PWM 2 output / Digital I/O

9 Ain0 / PB0 I/O Address RESET Analog Input / Digital I/O

10 Ain1 / PB1 I/O Address INCREMENT Analog Input / Digital I/O

11 Ain2 / PB2 I/O Configuration RESET Analog Input / Digital I/O

12 Ain3 / PB3 I/O Configuration INCREMENT Analog Input / Digital I/O

13 VDDA Analog Power Supply Analog Power Supply

14 GNDA Analog Ground Analog Ground

15 Ain4 / PB4 I/O Analog Input / Digital I/O

16 Ain5 / PB5 I/O Analog Input / Digital I/O

17 Ain6 / PB6 I/O Analog Input / Digital I/O

18 Ain7 / PB7/ PA7 I/O I/O EPROM Data Analog Input / Digital I/O

19 PA6 I/O I/O EPROM Data Digital I/O

20 T0CLK / PA5 I/O I/O EPROM Data Timer/PWM 0 clock / Digital I/O

21 T0STRT / PA4 I/O I/O EPROM Data Timer/PWM 0 start/stop / Digital I/O

22 T2OUT / PA3 I/O I/O EPROM Data Timer/PWM 2 inverted output /
Digital I/O

23 T1OUT / PA2 I/O I/O EPROM Data Timer/PWM 1 inverted output /
Digital I/O

24 T0OUT / PA1 I/O I/O EPROM Data Timer/PWM 0 inverted output /
Digital I/O

25 T0RES / PA0 I/O I/O EPROM Data Timer/PWM 0 Reset / Digital I/O

26 VPP
EPROM Programming

Power supply (12V ±5%) EPROM VDD or Vss

27 VSS Digital Ground Digital Ground

28 VDD Digital Power Supply Digital Power Supply

Table 1.1 ST52x420 SO-28 and DIP-28 Pin Configuration

6/120

ST52T420/E420

1.2 PIN DESCRIPTION

ST52x420 pins are configurable by means of
configuration registers.

VDD, VSS, VDDA, GNDA, VPP. In order to avoid
noise disturbances, the power supply of the digital
part is kept separated from the power supply of the
analog part.

VDD. Main Power Supply Voltage.

In the ST52x410 version the two VDD pins must be
connected togheter .

VSS. Digital Circuit Ground.

In the ST52x410 version the two VSS pins must be
connected togheter

VDDA. Analog VDD of the Analog to Digital
Converter.

GNDA. Analog VSSA of the Analog to Digital
Converter. Must be tied to VSS.

VPP. Main Power Supply for the internal EPROM.
(12 V ± 5% in programming phase) and Operating
Modes selector. During the Programming phase
(programming) VPP must be set at 12V. In the
Working phase VPP must be equal to VSS.

OSCin and OSCout. These pins are internally
connected with the on-chip oscillator circuit. A
quartz crystal or a ceramic resonator can be
connected between these two pins in order to allow
the correct operations of ST52x420 with various
stability/cost trade-offs. An external clock signal
can be applied to OSCin, in this case OSCout must
be kept floating.

RESET. This signal is used to restart ST52x420 at
the beginning of its program. It also allows to select
the program mode for the EPROM.

Ain0-Ain7. These 8 lines are connected to the
inputs of the analog multiplexer. They allow to
acquire 8 analog inputs. During the Programming
phase, Ain0, Ain1, Ain2 and Ain3 are used to
manage EPROM operation.

PA0-PA7, PB0-PB7, PC0-PC3. These lines are
organized as I/O port. Each pin can be configured
as input or output. During the Programming phase
PA port is used for the EPROM data read/write.

T0RES, T0CLK, T0STRT. These pins are related
with the internal Programmable Timer/PWM 0. This
Timer can be reset externally by using T0RES. In
Working Mode, T0RES resets the address counter
of the Timer. T0RES is active at low level.

The Timer 0 Clock can be the internal clock or can
be supplied externally by using the pin T0CLK.

An external Start/Stop signal can be used to control
the Timer through the pin T0STRT.

T0OUT, T1OUT, T2OUT. The TIMER/PWM
outputs are available on these pins.

T0OUT, T1OUT, T2OUT. The TIMER/PWM
inverted outputs are available on these pins.
TEST. It enables the testing functionalities; during
the Programming and Working phase it must be set
to VSS.

INT. This pin is used to start the External Interrupt
routine.

7/120

ST52T420/E420

2 INTERNAL ARCHITECTURE

ST52x420 is made up by the following blocks and
peripherals:

Control Unit (CU) and Data Processing Unit
(DPU)

ALU / Fuzzy Core

EPROM

128 Byte RAM

Clock Oscillator

Analog Multiplexer and A/D Converter

3 PWM / Timers

Digital I/O ports

ST52x420 Operating Modes

ST52x420 works in two modes, Programming and
Working Modes, depending on the control signals
level RESET, TEST and VPP.

The Operating modes are selected by setting the
control signal level as specified in the Control
Signals Setting table.

2.1 CONTROL UNIT and DATA PROCESSING
UNIT
The Control Unit (CU) formally includes five main
blocks. Each block decodes a set of instructions
then generating the appropriate control signals.
The main parts of the CU are shown in the figures
2.1 and 2.2.
The five different parts of the CU manage the
Loading, Logic/Arithmetic, Jump, Control and
Fuzzy instructions set.
The block called "Collector" manages the signals
coming from the different parts of the CU then
defines the signals for the Data Processing Unit
(DPU) and for the different peripherals of the
microcontroller.
The block called "Arbiter" manages the different
parts of the CU in order to have only one part of the
system activated during the working mode.
The CU structure is very flexible. It was designed
with the aim to easily adapt the core of the
microcontroller to the market needs. New
instructions set or new peripherals can be easily
included without changing the structure of the
microcontroller then mantaining the code
compatibility.
The CU reads the stored instructions on the
EPROM (Fetch) and decodifies them.The Arbiter
according to the instructions type, activates one of
the main blocks of the CU. Then all the control
signals for the DPU are generated.
A set of 46 different arithmetic, fuzzy and logic
instructions is available. Each instruction requires
from 6 (fuzzy instructions) up to 26 (DIVISION)
clock pulses to be performed.
The DPU receives, stores and sends the
instructions coming from the EPROM, the RAM or
from the peripherals in order to execute them.

Control
Signal Programming Reset Working

RESET Vss Vss VDD

TEST Vss Vss Vss

Vpp 12 V Vss Vss

Table 2.1. Control Signals setting

E
P
R
O
M

C
U

D
P
U

RAM

To Peripherals

From
Peripherals

EPROM Address 12 Bit

Microcode

RAM Addr.

RAM Data 8 Bit

RAM
Data Out
8 Bit

Control Signals

7 Bit

Figure 2.1 CU/DPU Block diagram

8/120

ST52T420/E420

Loading
Instruction Set

Logic Arithmetic
Instruction Set

Jump
Instruction Set

Control
Instruction Set

Fuzzy
Instruction Set

C
O
L
L
E
C
T
O
R

Control
Signals

A
R
B
 I
T
E
R

MicroCode

Clock Master

Figure 2.2 CU Block Diagram

M
U
X

PROGRAM COUNTER

RAM

128 Bytes
ADDRESS RAM
STACK POINT

MULTIPLEXER

ACCUMULATOR

FUZZY
REGISTERS

ALU
FLAGS REG.

add_EPR

PERIPHERALS

CU

EPROM
INPUTS

PERIPHERALS

Figure 2.3 Data Processing Unit (DPU)

9/120

ST52T420/E420

A/D

CONVERTER

RAM

EPROM

PWM/TIMER 0

PWM/TIMER 1

PWM/TIMER 2

WATCHDOG

TIMER

CONTROL

AND

4 kbytes

DIGITAL PORT

I/O

128 Bytes

T0OUT

T0CLK

T0STRT

T0RES

T1OUT

T1OUT

T2OUT

T2OUT

Ain0..Ain7

DPU

UNIT

OSCILLATOR

OSCoutVDD

POWER SUPPLY

VPP VSS VDDA OSCinGNDA

REG_CONF 0
 - - - - - - - - - -
 - - - - - - - - - -
REG_CONF 16

Configuration
Registers

PORT_A
PORT_B
PORT_C
PWM_0_COUNT
PWM_0_RELOAD
PWM_1_COUNT
PWM_1_RELOAD
PWM_2_COUNT
PWM_2_RELOAD

STACK_POINTER
CHAN 0
CHAN 1
CHAN 2
CHAN 3
CHAN 4
CHAN 5
CHAN 6
CHAN 7
PORT_A
PORT_B
PORT_C
PWM_0_COUNT
PWM_0_STATUS
PWM_1_COUNT
PWM_1_STATUS
PWM_2_COUNT
PWM_2_STATUS

Input
Registers

Output
Registers

RESET

RESET

T0OUT

PA0..PA7

PB0..PB7

PC0..PC3

INT

Figure 2.4 ST52x420 Peripherals Block Diagram

Note: ST52x410 version does not have the A/D Converter.

10/120

ST52T420/E420

2.1.1 Program Counter

The Program Counter (PC) is a 12-bit register that
contains the address of the next memory location
to be processed by the core. This memory location
may be an opcode, an operand or an address of
an operand.

The 12-bit length allows the direct addressing
mode of 4096 bytes in the program space.

After having read the current instruction address,
the PC value is incremented. The result of this
operation is shifted back into the PC.

The PC can be changed in the following ways:

JP (Jump) instruction PC = Jump Address

Interrupt PC = Interrupt Vector

RETI instruction PC = Pop (stack)

Reset PC = Reset Vector

Normal Instruction PC = PC + 1

2.1.2 Flags

The ST52x420 core includes different sets of flags.
Each set of flags consist of a CARRY flag (C), a
ZERO flag (Z) and SIGN flag (S).

Each interrupt level and the main level have their
own set of flags, that are saved in the STACK
together with the Program Counter.

If an interrupt occurs, the ST52x420 core uses the
associated set of flags, and stores, in the STACK,
the actual set in use .
These flags are restored from the STACK
automatically, when a RETI instruction is executed.
The flags are not cleared during the context
switching and remain in the state they were at the
exit of the last interrupt routine switching.
Note: A CALL subroutine does not store in the
STACK the current set of flags. For this reason a
RET instruction, consequent to a CALL instruction,
does not affect, the set of flags in use.
Carry flag is set when an overflow occurs during
arithmetic operations, otherwise it is cleared.
Sign flag is set when an underflow occurs during
arithmetic operations, otherwise it is cleared.
Zero flag is set when a result equal to 0 occurs
during arithmetic operations, otherwise it is
cleared.

ST52X420 CORE

PROGRAM MEMORY

RAM

CONTROL UNIT

DPU

ALU

ON CHIP PERIPHERALS

OUTPUT REGISTERS

CONFIGURATION
REGISTERS

INPUT REGISTERS

LDRI

LDCR

LDPR

LDRC

LDCE

PERIPHERAL

BLOCK

Figure 2.5 Address Spaces Description

11/120

ST52T420/E420

PROGRAM COUNTER

RAM
REG 0
REG 1

REG 2
REG 3

REG 4
REG 5

REG 127
REG 126

REG 125
REG 124

REG 123
REG - -

STACK LEVEL 1

STACK LEVEL 2

- - - - - - - - -

STACK LEVEL n

WHEN CALL OR
INTERRUPT REQ.

WHEN RETI OR RET

OCCURS

OCCURS

STACK

POINTER

Figure 2.6. Stack Operation

2.2 ADDRESS SPACES

ST52x420 has five separate address spaces:

RAM: 128 Bytes

Input Registers: 18 8-bit registers

Output Registers 9 8-bit registers

Configuration Registers: 17 8-bit registers

Program memory up to 4K Bytes

The Program memory will be described in further
details in the MEMORY section

2.2.1 RAM and STACK

The RAM memory consists of 128 general purpose
8-bit RAM registers.

All the registers in the RAM can be specified by
using a decimal address, e.g. 0 identifies the first
register of the RAM.

A RAM register is read in 2 cycles and is written in
3 cycles. To read or write the RAM registers the
LOAD instructions must be used. See table 2.6

Each interrupt level has its own set of flags, that is
saved in the STACK together with the Program

Counter. These flags are restored from the STACK
automatically, when a RETI instruction is executed.

When the instructions like Interrupt request or
CALL are executed, a STACK level is used to push
the PC and flags.

The STACK is located in the RAM. For each level
of stack 2 bytes of the RAM are used. The values
of this stack are stored from the last RAM register
(address 127). The maximum level of stack must
be less than 64.

The STACK POINTER indicates the first level
available to store data. When a subroutine call or
interrupt request occurs, the content of the PC and
the current set of flag are stored into the level
located by the STACK POINTER. When a
subroutine or interrupt return occurs (RET or RETI
instructions), the data stored in the highest stack
level are restored back into the PC and current
flags. These operating modes are described in the
Figure 2.6.

Note: User must take care to avoid the overwriting
of the RAM locations, where the STACK could be
stored .

12/120

ST52T420/E420

2.2.2 Input Registers Bench
The Input Registers (IR) bench consists of 18 8-bit
registers containing data or status of the
peripherals.
All the registers can be specified by using a decimal
address, e.g. 0 identifies the first register of the IR.
The assembler instruction:
LDRI RAM_Reg. IR_i
loads the value of the i-th IR in the RAM location
identified by the address RAM_Reg.

The first input register, STACK_POINTER, is
dedicated to store the value of the stack pointer.
The next 8 registers (ADC_OUT_0:7) of the IR are
dedicated to the 8 converted values coming from
the ADC. The last 9 registers contain data from the
I/O ports and PWM/Timers. The following table
summarises the IR address and the relative
peripheral.
For simplicity reasons a mnemonic name is
assigned to the registers. The same name is used
in FUZZYSTUDIOTM4.0 development tools.

IR MNEMONIC NAME PERIPHERALS

STACK_POINTER STACK POINTER 0

CHAN 0 A/D CHANNEL 0 1

CHAN 1 A/D CHANNEL 1 2

CHAN 2 A/D CHANNEL 2 3

CHAN 3 A/D CHANNEL 3 4

CHAN 4 A/D CHANNEL 4 5

CHAN 5 A/D CHANNEL 5 6

CHAN 6 A/D CHANNEL 6 7

CHAN 7 A/D CHANNEL 7 8

PORT_A PORT A INPUT REGISTER 9

PORT_B PORT B INPUT REGISTER 10

PORT_C PORT C INPUT REGISTER 11

PWM_0_COUNT PWM/TIMER 0 COUNTER 12

PWM_0_STATUS PWM/TIMER 0 STATUS
REGISTER 13

PWM_1_COUNT PWM/TIMER 1 COUNTER 14

PWM_1_STATUS PWM/TIMER 1 STATUS
REGISTER 15

PWM_2_COUNT PWM/TIMER 2 COUNTER 16

PWM_2_STATUS PWM/TIMER 2 STATUS
REGISTER 17

The input register PORT_C contains 4 bits.

Table 2.2 Input Registers

13/120

ST52T420/E420

2.2.3 Configuration Registers
The ST52x420 Configuration Registers allow to
conf igure a l l the b locks of the fuzzy
microcontroller. Table 2.3 describes the functions
and the related peripherals of each Configuration
Registers. By using the load instructions it is
possible to set the Configuration Registers by using

values stored in the Program Memory (EPROM) or
in the RAM.

CONFIGURATION REGISTER PERIPHERAL DESCRIPTION

REG_CONF 0 INTERRUPT MASK Interrupts mask setting

REG_CONF 1 INTERRUPT PRIORITY Interrupts priority setting

REG_CONF 2 WATCHDOG TIMER Watchdog Timer configuration

REG_CONF 3 A/D CONVERTER A/D configuration

REG_CONF 4 PORT A Set the relative bit like digital input or
digital output

REG_CONF 5 PWM/TIMER 0 PWM/TIMER 0 Working mode
Configuration

REG_CONF 6 PWM/TIMER 0
PWM/TIMER 0 Prescaler

configuration and output waveform
selection.

REG_CONF 7 PWM/TIMER 0 PWM/TIMER 0 Working mode
Configuration

REG_CONF 8 PWM/TIMER 1 PWM/TIMER 1 Working mode
Configuration

REG_CONF 9 PWM/TIMER 1
PWM/TIMER 1 Prescaler

configuration and output waveform
selection.

REG_CONF 10 PWM/TIMER 2 PWM/TIMER 2 Working mode
Configuration

REG_CONF 11 PWM/TIMER 2
PWM/TIMER 2 Prescaler

configuration and output waveform
selection.

REG_CONF 12 PORT A Set the bit 0,1 and 2 like Digital l/O or
complementary Timers Output.

REG_CONF 13 PORT B Set the relative bit like digital input or
digital output.

REG_CONF 14 PORT B Set the relative I/O like Digital or
Analog

REG_CONF 15 PORT C Set the relative I/O like digital input or
digital output

REG_CONF 16 PORT C Set the relative I/O like Digital I/O or
Timers Output

Table 2.3. Configuration Registers description

14/120

ST52T420/E420

Use and meaning of each register will be described
in further details in the corresponding section.

2.2.4 Output Registers

The Output Registers (OR) consist of 9 registers
containing data for the microcontroller peripherals
including the I/O Ports.

All the registers can be specified by using a decimal
address, e.g. 1 identifies the second OR.

By using the LOAD instructions it is possible to set
the Output Registers (OR) by using values stored
in the Program Memory (LDPE) or in the RAM
(LDPR)

The assembler instruction:

LDPR OR_i RAM_Reg.

OR MENMONIC NAME PERIPHERAL ADDRESS

PORT_A PORT A OR 0

PORT_B PORT B OR 1

PORT_C PORT C OR 2

PWM_O_COUNT TIMER/PWM 0 COUNTER 3

PWM_0_RELOAD TIMER/PWM 0 RELOAD REGISTER 4

PWM_1_COUNT TIMER/PWM 1 COUNTER 5

PWM_1_RELOAD TIMER/PWM 1 RELOAD REGISTER 6

PWM_2_COUNT TIMER/PWM 2 COUNTER 7

PWM_2_RELOAD TIMER/PWM 2 RELOAD REGISTER 8

Table 2.4 Output Registers

loads the value of the RAM location identified by
the address RAM_Reg in the OR i-th
Table 2.4 describes the OR.
For simplicity reasons a mnemonic name is
assigned to the OR. The same name is used in
FUZZYSTUDIOTM 4 development tools.
Use and meaning of each register will be described
in further details in the corresponding section.

15/120

ST52T420/E420

2.3 FUZZY CAPABILITIES
ST52x420 Fuzzy main features are:

Up to 8 Inputs with 8-bit resolution;

1 Kbyte of Program Memory (EPROM) available
to store more than 300 to Membership Functions
(MFs) for each Input;

Up to 128 Outputs with 8-bit resolution;

Possibility to process fuzzy rules with an high
number of antecedents

High number of Rules and Fuzzy Blocks.

The limits on the number of Fuzzy Rules and Fuzzy
Blocks are only related with the program memory
size.

2.3.1 Fuzzy Inference
The block diagram shown in figure 2.8 describes
the different steps performed during a fuzzy
algorithm. ST52x420 Core allows to implement a
MAMDANI type fuzzy inference with crisp
consequents. The input for the fuzzy inference are
stored in 8 dedicated Fuzzy input registers. The
instruction LDFR is used to set the input fuzzy
registers with the values stored in the RAM.

The result of a fuzzy inference is directly stored in
a location of the RAM

1

Input Value

αij

j-th Mbf

i-th INPUT VARIABLE

Figure 2.7. Alpha Weigth calculation

11

1m

n1

nm

FUZZYFICATION INFERENCE
PHASE

DEFUZZYFICATION

N rules

N rules -1

2

1

Input Values Output Values

Figure 2.8. Fuzzy Inference

2.3.2 Fuzzyfication Phase
In this phase is performed the intersection (alpha
weight) between the input values and the related
MFs (fig. 2.7).

8 Fuzzy input registers are available for the fuzzy
inferences.

After loading the input values by using the LDFR
assembler instruction, the user can start the fuzzy
inference by using the assembrer instruction

16/120

ST52T420/E420

FUZZY. During the fuzzyfication: the input data
are transformed in activation level (alpha weight)
of the MFs.

2.3.3 Inference Phase

It manages the alpha weights obtained during the
fuzzyfication phase to compute the truth value (ω)
for each rule.

This is a calculation of the maximum (for the OR
operator) and/or minimum (for the AND operator)
performed on alpha values according to the logical
connectives of fuzzy rules.

It is possibile to link together several conditions by
linguistic connectives AND/OR, NOT operator and
brackets.

The truth value ω and the related output singleton
are passed to the Defuzzyfication phase to
complete the inference calculation.

2.3.4 Defuzzyfication

In this phase the output crisp values are
determined implementing the consequent part of
the rules.

Each consequent Singleton Xi is multiplied by its
weight values ωi, calculated by the Fuzzy Inference
Unit in order to compute the upper part of the
defuzzification.

Input 1X1

αα1

Input 2X2

α2α2

OR = Max

IF INPUT 1 IS X1 OR INPUT 2 IS X2 THEN

Input 1X1

αα1

Input 2X2

α2α2

IF INPUT 1 IS X1 AND INPUT 2 IS X2 THEN

Figure 2.9. Fuzzyfication

Each output value is deduced from the consequent
crisp values (Xi) by using the defuzzification
formula:

Yi =
∑Xij ωij

j

N

∑ωij

j

N

where:

i = identifies the current output variable

N = number of the active rules on the current output

ωij =weigth of the j-th singleton

Xij = abscissa of the j-th singleton

The fuzzy outputs are stored in the RAM location
i-th specified in the assembler instruction OUT i.

1

i-th OUTPUT
VARIABLE

0 X
ij

X
i0

X
in

ω
i0

ω
ij

ω
in

j-th Singleton

Figure 2.10 Output Membership Functions.

17/120

ST52T420/E420

2.3.5 Input Membership Function

ST52x420 allows to manage triangular MFs. In
order to define a MF it is necessary to store three
different data on the program memory:

the vertex of the MF: V;

the lenght of the left semi-base: LVD;

the lenght of the right semi-base: RVD;

In order to reduce the size of the memory area and
the computational effort the vertical dimension of
the vertex is fixed to 15 (4 bits)

By using the previous memorization method it is
possible to store different kinds of triangular
Membership Functions. The figure 2.12 shows a
typical example of MFs that can be defined in
ST52x420.

Each MF is then defined storing 3 bytes in the first
1 Kbyte of the memory program.

The MF is memorized by using the following
instruction:

MF n_MF lvd v rvd

where

X

15

LVD RVD

V

15

0

0

Input Mbf

Output Singleton

Output Variable

Input Variable

w

Figure 2.11. MFs Parameters Figure 2.12. Example of valid MFs

n_MF identifies the MF, lvd, v, rvd are the
parameters describing the MF’s shape. In a
trapezoidal MF LVD, or RVD, is 0.

2.3.6 Output Singleton

ST52x420 uses for the output variables a particular
kind of membership function called Singleton. A
Singleton has not a shape, like a traditional MF, and
it is characterized by a single point identified by the
couple (X, ω), where the ω is calculated by the
Inference Unit as described before.

Often, a Singleton is simply identified with its Crisp
Value X.

18/120

ST52T420/E420

2.3.7 Fuzzy Rules.

The rules can have the following structures:

if A op B op C...........then Z

if (A op B) op (C op D op E...)then Z

where op is one of the possible linguistic operators
(AND/OR)

In the first case the rule operators are managed
sequentially; in the second one, the priority of the
operator is fixed by the brackets.

Each rule is codified by using an instruction set, the
inference time for a rule with 4 antecedents and 1
consequent is about 3 microseconds.
The assembler Instruction Set allowing to manage
the fuzzy instructions is reported in the following
table

Instruction Description

MBF n_MF lvd v rvd Stores the MF n_MF with the shape identified by the parameters lvd, v and rvd.

LDP n m Fixes the alpha value of the input n with the MF m and stores it in internal registers.

LDN n m Calculates the negated alpha value of the input n with the MF m and stores the result in internal
registers.

FZAND Implements the fuzzy operation AND between the last two values stored in internal registers.

FZOR Implements the fuzzy operation OR between the last two values stored in internal registers.

LDK Stores the result of the last fuzzy operation executed in the data stack.

SKM Stores the result of the last fuzzy operation executed in internal registers.

LDM Copies the value of the register M in the data stack.

CON crisp Multiplies the crisp value with the last ω weight.

OUT n_out Performs the defuzzification and store the fuzzy output in the RAM n_out location.

FUZZY Starts the single fuzzy output calculation.

Table 2.5. Fuzzy Instructions Set

19/120

ST52T420/E420

The Assembler instructions operate as in the following example:

Let us suppose you have previously defined the MF with MBF instructions, the rule:

IF Inp0 is NOT MF01 AND Inp2 is MF21 OR Inp3 is MF33 THEN CRISP1

is therefore codified as:

 LDN 0 1 Loads in the stack the NOT value relative to the first term of the rule (supposing
that MF_num for MF01 is 1).

LDP 2 21 Loads in the stack the value relative to the second term of the rule(supposing that
MF_num for MF21 is 21) .

FZAND Calculates the min between two values in the stack.

LDK Stores the result of the previous operation in the stack.

LDP 3 33 Loads in the stack the value relative to the third term of the rule (supposing that
MF_num for MF33 is 33).

FZOR Calculates the max between the two values in the stack.

CON 58 Performs the product between the values calculated and the value CRISP1 = 58
(consequent calculus)

Let us suppose now you have the following rule:

IF (Inp2 is MF21 AND Inp3 is NOT MF35) OR (Inp0 is MF03 OR Inp1 is NOT MF16) THEN CRISP2

It is codified with the following instructions:

LDP 2 21 Loads in the stack the value relative to the first term of the rule (supposing that
MF_num for MF21 is 21).

LDN 3 35 Loads in the stack the NOT value relative to the second term of the rule (supposing
that MF_num for MF35 is 35).

FZAND Calculates the min between the two values in the stack.

SKM Stores the calculated value on the temporary register.

LDP 0 3 Loads in the stack the value relative to the third term of the rule (supposing that
MF_num for MF03 is 3).

LDN 1 16 Loads in the stack the NOT value relative to the fourth term of the rule (supposing
that MF_num for MF16 is 16).

FZOR Calculates the max between the two values in the stack.

LDK Stores the result of the previous operation in the stack.

LDM Copies the content of the temporary register in the stack.

FZOR Calculates the max between the two values in the stack

CON 35 Performs the product between the value calculated and the value CRISP1=35 (Con-
sequent calculus).

After the inference of all the rules relative to an output, you can obtain the output through the instruction:

OUT 0 To calculate the first fuzzy output.

20/120

ST52T420/E420

Load Instructions

Mnemonic Instruction Bytes Cycles Z S C

LDCE LDCE conf, EPROM 3 17 - - -

LDCR LDCR conf, RAM 3 14 - - -

LDFR LDFR FUZZY_i, RAM 3 14 - - -

LDPE LDPE per, EPROM 3 17 - - -

LDPR LDPR per, RAM 3 14 - - -

LDRC LDRC RAM, Const 3 14 - - -

LDRE LDRE RAMi, Eprom 3 16 - - -

(LDRE) LDRE (RAMi), (EPROMj) 3 18 - - -

LDRI LDRI RAM i, inp_reg 3 15 - - -

LDRR LDRR RAM i RAM j 3 16 - - -

PGSET PGSET const 2 9 - - -

Arithmetic Instructions

Mnemonic Instruction Bytes Cycles Z S C

ADD ADD regi, regj 3 17 I - I

ADDO ADDO regi, regj 3 20 I I I

AND AND regi, regj 3 17 I - -

ASL ASL regi 2 15 I - I

ASR ASR regi 2 15 - I I

DEC DEC regi 2 15 I I -

DIV DIV regi, regj 3 26 I I I

INC INC regi 2 15 I - I

MULT MULT regi, regj 3 19 I - -

NOT NOT regi 2 15 I - -

OR OR regi, regj 3 17 I - -

SUB SUB regi, regj 3 17 I I -

SUBO SUBO regi, regj 3 20 I I I

MIRROR MIRROR regi 2 15 I - -

Table 2.6. Arithmetic & Logic Instructions Set

21/120

ST52T420/E420

Jump Instructions

Mnemonic Instruction Bytes Cycles Z S C

CALL CALL addr 3 18 - - -

JP JP addr 3 12 - - -

JPC JPC addr 3 10/12 - - -

JPNC JPNC addr 3 10/12 - - -

JPNS JPNS addr 3 10/12 - - -

JPNZ JPNZ addr 3 10/12 - - -

JPS JPS addr 3 10/12 - - -

JPZ JPZ addr 3 10/12 - - -

RET RET 1 13 - - -

Interrupt Instructions Set

Mnemonic Instruction Bytes Cycles Z S C

HALT HALT 1 7/16 - - -

MEGI MEGI 1 7/16 - - -

MDGI MDGI 1 7/16 - - -

RETI RETI 1 12 - - -

RINT RINT INT 2 8 - - -

UDGI UDGI 1 7/16 - - -

UEGI UEGI 1 7/16 - - -

WAITI WAITI 1 7 - - -

Control instructions set

Mnemonic Instruction Bytes Cycles Z S C

FUZZY FUZZY 1 5 - - -

NOP NOP 1 6 - - -

WDTRFR WDTRFR 1 7 - - -

WDTSLP WDTSLP 1 6 - - -

Notes: I affected, IS stacked value restored, - not affected

Table 2.7. Arithmetic & Logic Instructions Set (Continue)

22/120

ST52T420/E420

2.4 ARITHMETIC LOGIC UNIT
The 8-bit Arithmetic Logic Unit (ALU) allows to
perform arithmetic calculations and logic
instructions which can be divided into 5 groups:
Load, Arithmetic, Jump, Interrupts and Program
Control instructions (refer to the ST52x420
Assembler Set for further details).
The computational time required for each
instruction consists of one clock pulse for each
Cycle plus 3 clock pulses for the decoding phase.
The ALU of the ST52x420 is able to perform
multiplication (MULT) and division (DIV), by
means of an hardware multiplier and an hardware
divider. In this way it is possible to increase the
computational throughput and reduce code size
requirement for complex algorithms. The
multiplication is performed by using 8 bit operands
storing the result in 2 registers (16 bit values), see
Figure 2.13. The division is performed between a
16 bit dividend and an 8 bit divider, the result is
stored in an 8 bit register (See Fig. 2.14)

RAM
0

1

2

i

j+1

j-1

j

127

125

126

REG. j REG. i

LSB MSB

X

16 Bit

Figure 2.13 Multiplication

RAM
0

1

2

i

j+1

j-1

j

127

125

126

REG. j REG. j+1

REMAINDER QUOTIENT

REG. i:

i-1

i+1

Figure 2.14 Division

2.5 ST52x420 Assembler Pseudo Instructions
The ST52x420 assembler instructions set includes
some pseudo instructions.
The Assembler pseudo instructions are used to set
the data for the Fuzzy Computation, the Assembler
then optimizes these data considering the code
format used from the Fuzzy Computation Unit.
The Assembler pseudo instructions have not direct
correspondence with the machine code; this is
obtained after the elaboration of the supplied data
by means of the Assembler.
There are also the pseudo instructions to set data
and to set the current location in EPROM Memory.
For more details see the chapter related to the
instructions set.

23/120

ST52T420/E420

3 EPROM
The EPROM memory provides an on-chip
user-programmable non-volatile memory, that
allows fast and reliable storage of user data.

The EPROM memory can be locked by user. In fact
a memory location, called Lock Cell, is devoted to
lock the EPROM and to avoid external operations.
It is possible to write a software identification code,
called ID CODE, to distinguish which software
version is stored in the memory.

There are 32 kbits of memory space with an 8-bit
internal parallelism (4 kbytes) addressed by an
12-bit bus. The data bus is of 8 bits.

The memory has a double supply: VPP is equal to
12V±5% in Programming Phase or to VSS during
Working Phase. VDD is equal to 5V±10%.

The ST52x420 EPROM memory is divided into
three main blocks (see Figure 3.1):

Interrupt Vectors memory block (3 through 17)
contains the jump instructions to the addresses
for the interrupt routines. Each interrupt vector is
composed of three bytes.

Mbfs Setting memory block (18 through 1023)
contains the coordinates of the vertexes of every

0

2
3

20

Program Instruction
First Address

INT_EXT
INT_SCI

INT_TIMER/PWM2
INT_TIMER/PWM1
INT_TIMER/PWM0

INT_ADC

MemAdd
Mbfs Parameters

Fuzzy and Boolean
Algorithms

Program
Instruction
Set

Mbfs Setting
and Program
Instruction Set

Interrupt
Vectors

21

2047

4095ST52420G2

ST52420G1

ST52420G0 MemAdd+1

Figure 3.1. Memory Map

Mbf defined in the program. The memory space
of this block, not used to contain the Mbfs
settings, is available for the Program instructions
set.

The Program Instruction Set memory block
(1024 through 4095) contains the instruction set
of the user program.

The locations 0, 1 and 2 contain the address of the
first microcode instruction.

The operations that can be performed on the
EPROM during the Programming Phase are: Stand
By, Memory Writing, Reading and Verify, Memory
Lock, IDCode Writing and Verify.

Above operations are managed by using an
internal 4-bit configuration register and an EPROM
Configuration Register. Depending on the value
written in such register, the corresponding
operation is performed. The reading phase is
executed with VPP= 5V±5%, while the verify phase
needs VPP= 12V±5%. The Blank Check must be a
reading operation with VPP= 5V±5%.

Table 3.1 shows the EPROM Configuration
Register codes used to identify the running
operation.

24/120

ST52T420/E420

3.1 EPROM Programming Phase Procedure

The Programming mode is selected by applying
12V±5% voltage or 5V±5% voltage to the VPP pin
and setting the control signal as follows:

RESET (pin 1) =Vss

TEST (pin 4) =Vss

If the VPP voltage is 5V±5% it is possible only to
read.

RST_ADD (pin 9), INC_ADD (pin 10), RST_CONF
(pin 11), INC_CONF (pin 12) and PHASE (pin 5)
are the contro l s ignals used dur ing the
Programming Mode.

PHASE,RST_CONF and RST_ADD signals are
active on level, the others are active on rising edge.

PHASE and RST_ADD signals are active low,
RST_CONF signal is active high.

Data in/out digital port is PORT A (from pin 18 up
to pin 25).

It is possible to lock the memory by means of the
Memory Lock Status, that is a flag used to enable
the EPROM operations.

If Memory Lock Status is 1 all EPROM operations
are enabled, otherwise, it is only possible to read
(and verify) the OTP code and the Memory Lock
Status.

Only If the EPROM is not locked by means of Lock
Cell (see paragraph 3.1.2), it is possible to enable

the EPROM operations, changing the Memory
Lock Status from 0 to 1.

RST_ADD signal resets the memory address
register and the Memory Lock Status. For this
reason, when the RST_ADD becomes high, it is
necessary to unlock the memory to read or write.

INC_ADD signal increments the memory
address register value, that is the address of the
EPROM memory cell that will be affected by the
operation in progress.

RST_CONF s ignal resets the EPROM
Configuration Register. When RST_CONF is high,
the DATA I/O Port A is in output, otherwise it is
always in input.

INC_CONF signal increments the EPROM
Configuration Register value.

PHASE signal validates the operation selected by
means of EPROM Configuration Register value.
When PHASE signal is low valid data have to be
present in the PORT A.

MEMORY UNLOCK MEMORY WRITING
LOCATION ADDRESS =1

DATA
IN

DATA
OUT

MEMORY VERIFY

DATA
OUT

VALID
DATA

VALID
DATA

VALID
DATA

DATA
OUT

Figure 3.2. EPROM Programming Timing

25/120

ST52T420/E420

3.1.1 EPROM Operation
To execute one EPROM operat ion, the
corresponding identification value must be loaded
in the EPROM Configuration Register (see table
3.1). The signal timing is the following:

-- RST_ADD= high and PHASE= high,
-- a positive pulse on RST_CONF signal reset

the EPROM Configuration Register,
-- INC_CONF signal generates a number of

positive pulses equal to the value to be
loaded in the EPROM Configuration Regis-
ter.

-- After this sequence, a negative pulse of the
PHASE signal will validate the selected oper-
ation. During Writing operations valid data
have to be present in the Port A when
PHASE signal is low.

The minimum PHASE signal pulse width must be
10 µs for the EPROM Writing Operation and 100
ns for the others.

If the EPROM Configuration Register has not been
reseted, every INC_CONF signal impulse
increases the existing value.
When RST_CONF is high, the DATA I/O PORT A
is enabled in output and the reading / verify
operation results are available.

After a writing operation, when RST_CONF is high,
the Port A is in output with no valid data.

 3.1.2 EPROM Locking
The Memory Lock operation, that is identified with
the number 4 in the EPROM Configuration
Register, writes "0" in the Memory Lock Cell.
At the beginning of an External Operation, when
RST_ADD signal changes from low level to high
level, the Memory Lock Status is "0", therefore it is
necessary to unlock it before to proceed.
To unlock the Memory Lock Status the operation,
that is identified with the number 2 in the EPROM
Configuration Register must be executed (see
Figure 3.2).
The Memory Lock Status can be changed only if
Memory Lock Cell is "1", therefore, for this reason,
after a Memory Lock operation it is not possible to
execute external operations except to read (or
verify) the OTP Code and the Memory Lock Status

3.1.3 EPROM Writing
When the memory is blank, all the bits are at logic
level "1". The data are introduced by programming
only the zeros in the desired memory location;
however all input data must contain both "1" and
"0".
The only way to change "0" into "1" is to erase the
whole memory (by exposure to Ultra Violet light)
and reprogram it.
The memory is in Writing mode when the EPROM
Configuration Register value is 3 (see table 3.1).

The VPP voltage must be 12V±5%, with stable data
on the data bus PA(0:7).
The signals timing is the following (see Figure 3.2):
1) RST_ADD and RST_CONF change from low to
high level,
2) two pulses on INC_CONF signal load the
Memory Unlock operation code,
3) a negative pulse (100 ns) on the PHASE signal
validates the Memory Unlock operation,
4) a negative pulse on RST_CONF signal resets
the EPROM Configuration Register,
5) three positive pulses on INC_CONF load the
Memory Writing operation code (see table 3.1),
6) a train of positive pulses on INC_ADD signal
increments the memory location address up to the
requested value (generally this is a sequential
operation and only one pulse is used),
7) valid data have to be present in the PORT A (this
step can be performed before),

8) a negative pulse (10 µs) on the PHASE signal
validates the Memory Writing operation and the
memory location is written.
For sequential Writing operations, it is necessary
to repeat the steps since 6 to 7.

OPERATION
REGISTER VALUE

Stand By 0

Memory
Reading / Verify

1

Memory Unlock and Lock
Status Reading

2

Memory
Writing

3

Memory
Lock

4

ID CODE
Writing

5

Memory Lock Status
Reading / Verify

9

ID CODE
Reading / Verify 10

Table 3.1. EPROM Configuration Register

26/120

ST52T420/E420

3.1.4 EPROM Reading / Verify

The reading phase is executed with VPP= 5V±5%,
instead of verify phase that needs VPP= 12V±5%.
The Memory Verify operation is available in order
to verify the correctness of the data written. It is
possible to execute a Memory Verify operation
immediately after the writing of each byte and in
this case (see Figure 3.2):
1) a positive pulse on RST_CONF signal resets the
EPROM Configuration Register, if it was not
already reseted
2) one positive pulse on INC_CONF loads the
Memory Reading/Verify operation code,
3) a negative pulse (100 ns) on the PHASE signal
validates the Memory Reading / Verify operation,
4) a negative pulse on RST_CONF signal puts in
the PA(0:7) pins (Port A) the value stored in the
actual memory address and resets the EPROM
Configuration Register.
Then, if any error in writing occured, the user has
to repeat the EPROM writing.

3.1.5 Stand by Mode
The EPROM has a standby mode which reduces
the active current from 10 mA (Programming
mode) to less than 100 µA. The Memory is placed
in standby mode by setting PHASE signal at high
level or when the EPROM Configuration register
value is 0 and PHASE signal is low.

3.1.6 ID code
It is possible to write a software identification code,
called ID code, to distinguish which software
version is stored in the memory.
64 Bytes are dedicated to store this code by using
the address values from 0 to 63.
It is possible to read or verify the ID Code also if
the Memory Lock Status is "0".
The signals timing is the same of a normal
operation (see paragraph 3.1.1).

3.2 Eprom Erasure
Thanks to the transparent window available in the
CDIP28W package, its memory contents may be
erased by exposure to UV light.
Erasure begins when the device is exposed to light
with a wavelength shorter than 4000Å. It should be
noted that sunlight, as well as some types of
artificial light, includes wavelengths in the
3000-4000Å range which, on prolonged exposure,
can cause erasure of memory contents. It is thus
recommended that EPROM devices be fitted with

an opaque label over the window area in order to
prevent unintentional erasure.
The recommended erasure procedure for EPROM
devices consists of exposure to short wave UV light
having a wavelength of 2537Å. The minimum
recommended integrated dose (intensity x
expo-sure t ime) for complete erasure is
15Wsec/cm 2.
This is equivalent to an erasure time of 15-20
minutes using a UV source having an intensity of
12mW/cm 2 at a distance of 25mm (1 inch) from
the device window.

27/120

ST52T420/E420

4 INTERRUPTS
The Control Unit (CU) responds to peripheral
events and external events through its interrupt
channels.

When such an event occurs, if the related interrupt
is not masked and according to a priority order, the
current program execution can be suspended to
allow the CU to execute a specific response
routine.

Each interrupt is associated with an interrupt vector
that contains the memory address of the related
interrupt service routine. Each vector is located in
the Program Space (EPROM Memory) at a fixed
address (see Interrupt Vectors table fig. 4.2).

4.1 Interrupt Functionment

If, at the end of an arithmetic or logic instruction,
there are pending interrupts, the one with the
highest priority is passed. To pass an interrupt
means to store the arithmetic flags and the current
PC in the stack and execute the associated
Interrupt routine, whose address is located in two
bytes of the EPROM memory location between
address 2 and 17.

The Interrupt routine is performed as a normal code
checking, at the end of each instruction, if an higher
priority interrupt has to be passed. An Interrupt
request with the higher priority stops the lower
priority Interrupt. The Program Counter and the
arithmetic flags are stored in the stack.

With the instruction RETI (Return from Interrupt)
the arithmetic flags and Program Counter (PC) are
restored from the top of the stack. This stack was
already described in the section 2.2.1.

An Interrupt request cannot stop the processing of
the fuzzy rules, but this is passed only after the end
of a fuzzy rule or at the end of a logic, or arithmetic,
instruction.

REMARK: A Fuzzy routine can be interrupted
only in the main program. An interrupt request
doesn’t have to stop a Fuzzy function, that is
running in another interrupt routine. For this
reason, to use a fuzzy function inside an
interrupt routine, the user has to include the
fuzzy function between an UDGI (MDGI)
instruction and an UEGI (MEGI) instruction
(see the following paragraphs), in order to
disable the interrupt request during the
execution of the fuzzy function.

4.2 Global Interrupt Request Enabling
When an Interrupt occurs, it generates a Global
Interrupt Pending (GIP), that can be hanged up by
software. After a GIP a Global Interrupt Request
(GIR) will be generated and Interrupt Service

NORMAL
PROGRAM

FLOW

INTERRUPT
SERVICE
ROUTINE

RETI
INSTRUCTION

INTERRUPT

Figure 4.1. Interrupt Flow

INT_EXT

INT_ADC

INT_PWM/ 0TIMER

INT_PWM/ 1TIMER

INT_PWM/ 2TIMER

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

INTERRUPT
VECTORS

Figure 4.2. Interrupt Vectors Mapping

Global Interrupt
Pending

User Global
Interrupt Mask

Macro Global
Interrupt Mask

Global Interrupt
Request

Figure 4.3. Global Interrupt Request

28/120

ST52T420/E420

Routine associated to the interrupt with higher
priority will start.
In order to avoid possible conflicts between
interrupt masking set in the main program, or inside
macros, the GIP is hanged up through the User
Global Interrupt Mask or the Macro Global Interrupt
Mask (see fig.4.3).

UEGI/UDGI instruction switches on/off the User
Global Interrupt Mask enabling/disabling the GIR
for the main program.
MEGI/MDGI instructions switches on/off the Macro
Global Interrupt Mask in order to ensure that the
macro will not be broken.

4.3 Interrupt Sources
ST52x420 manages interrupt signals generated by
the internal peripherals (PWM/Timers and Analog
to Digital Converter) or coming from the INT/PC0
pin. The External Interrupt is active on high level of
INT/PC0 signal.
Each peripheral can be programmed in order to
generate the associated interrupt; further details
are described in the related chapter.

4.4 Interrupt Maskability
The interrupts can be masked by configuring the
REG_CONF 0 by means of LDCR, or LDCE,
instruction. The interrupt is enabled when the bit
associated to the mask interrupt is "1". Viceversa,
when the bit is "0", the interrupt is masked and is
kept pendent.
For example:
LDRC 10,6 //loads the constant 6 in
the RAM Register 10

LDCR 0, 10 // sets the CONF_REG 0 with
the value stored in the RAM Register
10
the result is CONF_REG0 =00000110 thus
enabling the interrupts coming from the ADC

Bit Name Value Description

0 MSKE

0
External Interrupt
Masked

1
External Interrupt
Not Masked

1 MSKAD

0
A/D Converter Interrupt
Masked

1
A/D Converter Interrupt
Not Masked

2 MSKTM0

0
PWM/TIMER 0 Interrupt
Masked

1
PWM/TIMER 0 Interrupt
Not Masked

3 MSKTM1

0
PWM/TIMER 1 Interrupt
Masked

1
PWM/TIMER 1 Interrupt
Not Masked

4 MSKTM2

0
PWM/TIMER 2 Interrupt
Masked

1
PWM/TIMER 2 Interrupt
Not Masked

5 not used -

6 not used -

7 not used
0

1

Reset Configuration ’00000’

Table 4.1. Configuration Register 0

Name Description Priority Peripheral
Code Maskable EPROM

Locations

INT_ADC ADC Int Programmable 00 yes 3-5

INT_PWM/TIMER0 PWM/TIMER 0 Int Programmable 01 yes 6-8

INT_PWM/TIMER1 PWM/TIMER 1 Int Programmable 10 yes 9-11

INT_PWM/TIMER2 PWM/TIMER 2 Int Programmable 11 yes 12-14

INT_EXT External Interrupt (INT) Ext Highest - yes 15-17

Table 4.2. Interrupts Description

29/120

ST52T420/E420

 7 0

MSKTM0 MSKAD MSKE

REG_CONF 0

EXTERNAL INT.
A/D CONV. INT.
PWM/TIMER 0 INT.
PWM/TIMER 1 INT.
PWM/TIMER 2 INT.
NOT USED

MSKTM1MSKTM2not used not usednot used

Figure 4.4. Interrupt Configuration Register 0

 7 0

REG_CONF 1

PRIORITY HIGH

PRIORITY MED. HIGH

PRIORITY MED. LOW

PRIORITY LOW

LOW LOW MEDLMEDL MEDH HIGHHIGHMEDH

Figure 4.5. Interrupt Configuration Register 1

30/120

ST52T420/E420

(INT_ADC) and from the PWM/TIMER 0
(INT_PWM/TIMER0).

4.5 Interrupt Priority

Six priority levels are available: level 5 has the
lowest priority, level 0 has the highest priority.

Level 5 is associated to the Main Program, levels
4 to 1 are programmable by means of the priority
register called REG_CONF1 (see fig.4.5 and table
4.3); whereas the higher level is related to the
external interrupt (INT_EXT).

PWM/Timers and ADC are identified by a two-bits
Peripheral Code (see Table 4.2); in order to set the
i-th priority level the user must write the peripheral
label i in the related PRIi priority level.

i.e.

LDRC 10, 201 //(loads the value
201=’11001001’ in the RAM Register
10)

LDCR 1, 10 // sets the REG_CONF1=
’11001001’

 thus defining the following priority levels:

Bit Name Value Priority Level

0, 1 PRI1 Peripheral
Code

High

2, 3 PRI2 Peripheral
Code

Medium-High

4, 5 PRI3 Peripheral
Code

Medium-Low

Table 4.3. Configuration Register 1

MAIN PROGRAM5

4

3

2

1

0

PRI2

PRI0

PRI2

PRI1

PRI2

PRI3

PRI4

MAIN PROGRAM

PRIORITY
LEVEL

PRI2 PRI0 PRI4 PRI1 PRI3

Figure 4.6. Example of a Sequence of Interrupt Requests

Level 1: INT_PWM/TIMER0(PWM/TIMER 0
Code: 01)

Level 2: INT_PWM/TIMER0(PWM/TIMER 1
Code: 10)

Level 3: INT_ADC(ADC Code: 00)

Level 4: INT_PWM/TIMER0(PWM/TIMER 2
Code: 11)

REMARK: the Interrupt priority must be fixed ad
the beginning of the main program, because at
the RESET REG_CONF1=’00000000’, and this

31/120

ST52T420/E420

condition could generate wrong operations.
During the program execution it is possible to
modify the interrupt priority only with the
following procedure:
step 1):
mask the interrupts by means of a UDGI (or
MDGI) instruction
step 2):
change the REG_CONF1 value to modify the
interrupt priority
step 3):
reset by mean of RINT instructions all the
pending interrupt routines
step 4):
unmask the interrupts by mean of a UEGI (or
MEGI) instruction
When a source provides an Interrupt request, and
the request processing is also enabled, the CU
changes the normal sequential flow of a program
by transferring program control to a selected
service routine.
When an interrupt occurs the CU executes a JUMP
instruction to the address loaded in the related
location of the Interrupt Vector.
When the execution returns to the original program,
it begins immediately following the interrupted
instruction.

REMARK: when an interrupt is masked, it is
excluded from the priority arbitration. This may
cause the following side-effect: if an interrupt
is masked during the servicing of his own
service routine, this may be interrupted by
lower priority sources. To avoid any problem
you can mask the interrupt just at the end of the
routine.

4.6 Interrupts and Low power mode
All not masked interrupts allow the processor to
leave the WAIT low power mode. External interrupt
and ext. RESET allow the processor to leave the
HALT low power mode.

Name Description Value

INT_ADC ADC 0

INT_PWM/TIMER0 PWM/TIMER 0 1

INT_PWM/TIMER1 PWM/TIMER 1 2

INT_PWM/TIMER2 PWM/TIMER 2 3

INT_EXT External Interrupt 4

Table 4.4. RINT instruction code

4.7 Interrupt RESET
An eventually pending interrupt can be reset with
the instruction RINT j, which resets the interrupt
of the peripheral j according to the following table
(see table 4.4)
REMARK: RINT command must be preceded
from a UDGI (or MDGI) command and followed
by a UEGI (or MEGI) command.

32/120

ST52T420/E420

5 CLOCK, RESET & POWER SAVING MODE

5.1 Clock System

The ST52x420 Clock Generator module generates
the internal clock for the internal Control Unit, ALU
and on-chip peripherals and it is designed to
require a minimum of external components.

The ST52x420 oscillator circuit generates an
internal clock signal with the same period and
phase as at the OSCin input pin. The maximum
frequency allowed is 20 MHz.

The system clock may be generated by using either
a quartz crystal, or a ceramic resonator
(CERALOC); or, at least, by means of an external
clock.

The different clock generator options connection
methods are shown in Figure 5.1.

When an external clock is used, it must be
connected to the pin OSCin, while OSCout must be
kept floating.

The crystal oscillator start-up time is a function of
many variables: crystal parameters (especially RS),
oscillator load capacitance (CL), IC parameters,
enviroment temperature, supply voltage.

It must be observed that the crystal or ceramic
leads and circuit connections must be as short as

OSCin OSCout

ST52X420

OSCin

ST52X420

OSCout

CRYSTAL CLOCK EXTERNAL CLOCK

Cl1
10pF

Cl2
10pF CLOCK

INPUT

FLOATING

Figure 5.1 Oscillator Connections

possible. Typical values for CL1, CL2 are 10pF for
a 20 MHz crystal.

33/120

ST52T420/E420

5.2 RESET

There are two sources of Reset:

- RESET pin (external source.)

- WATCHDOG (Internal Source)

When a Reset event happens, the user program
restarts from the beginning.

The Reset pin is an input. An internal reset does
not affect this pin.

A Reset signal originated by external sources is
instantaneously recognised. The RESET pin may
be used to ensure VDD has risen to a point where
the MCU can operate correctly before the user
program is run. In working mode the Reset must
be set to VDD (see Table 2.1)

5.3 Power Saving Mode

There are two Power Saving modes: WAIT and
HALT mode. These conditions may be entered
using the WAIT or HALT instructions.

5.3.1 Wait Mode

Wait mode places the MCU in a low power
consumption by stopping the CPU. All peripherals
remain active. During the WAIT mode, the
unmasked Interrupts are enabled. The MCU will
remain in Wait mode until an Interrupt or a RESET
occurs, whereupon the Program Counter jumps to
the interrupt service routine or, if a RESET occurs,
at the beginning of the user program.

WATCHDOG RESET

RESET INTERNAL
RESET

Figure 5.2 Reset Block Diagram
Figure 5.3 WAIT Flow Chart

Vcc

100 F 10k

2.2k 2.2k 1 F

RESET

Figure 5.4 Simple Reset Circuit

34/120

ST52T420/E420

5.3.2 Halt Mode
The Halt mode is the MCU lowest power
consumption mode. The Halt mode is entered by
executing the HALT instruction. The internal
oscillator is turned off, causing all internal
processing to be stopped, including the operations
of the on-chip peripherals. The Halt mode cannot
be used when the watchdog is enabled. The
HALT instruction will be skipped, if it is executed
while the watchdog system is enabled.
In Halt mode the external interrupt is enabled. If an
interrupt occurs, the CPU becomes active.
The MCU can exit the Halt mode upon reception of
an external interrupt or a reset. The oscillator is
then turned on and a stabilisation time is provided
before restarting the CPU operations. The
stabilisation time is 4096 CPU clock cycles.

Wake-Up from HALT mode
After the start up delay, the CPU restarts the
operations.
The device can wake up from the HALT mode
through one of the following events:
1) External Interrupt
2) External reset fetching the reset vector
Wake-up is regardless of the state of the
External Interrupt mask. If a not masked External
Interrupt occurs, the device, after the start up delay,
continues executing the External Interrupt service
routine. If a masked External Interrupt occurs, the
device, after the start up delay, continues executing
the User Program.
If the External Reset occurs, the device, after the
start up delay, restarts the User Program.

OSCILLATOR

PERIPHERALS CLOCK

CPU CLOCK

OFF

OFF

OFF

HALT INSTRUCTION

WATCHDOG

ENABLED

INSTRUCTION

SKIPPED

YES

RESET

EXTERNAL

INTERRUPT

PERIPHERALS CLOCK

CPU CLOCK

OSCILLATOR

ON

ON

ON

YES

NO

NO

YES

NO

4096 CPU CLOCK

CYCLES DELAY

SERVICE INTERRUPT or
RESTART THE USER PROGRAM

Figure 5.5 HALT Flow Chart

35/120

ST52T420/E420

6. I/O PORTS
6.1 Introduction
ST52x420 devices feature flexible individually
programmable multifunctional input/output lines.
Refer to figures 1.3 and 1.4 for specific pin
allocations.

19 I/O lines, grouped in 3 different ports, are
available on the ST52x420:

PORT A = 7 or 8-bit port (PA0 - PA7 pins)

PORT B = 7 or 8-bit port (PB0 - PB7 pins)

PORT C = 4-bit port. (PC0 - PC3 pins)
The PIN 18 can be configured to belong to the port
A or to the port B.

These I/O lines can be programmed to provide
digital input/output and analog input, or to connect
input/output signals to the on chip peripherals as
alternate pin functions.
The input buffers are TTL compatible with Schmitt
trigger in the port A and C while the port B is CMOS
compatible without Schmitt trigger. Refer to chapter
10 for more details.

The output buffer is able to supply up to 8 mA.
The port cannot be configured to be at the same
time input and output.
Each port is configured by using two configuration
registers. The first is used to define if a pin is an
input or output while the second defines the
Alternate functions.

REMARK : For a safe use of parallel port as
digital I/O, it is recomended to configure the

port B and C with all pins in input or output: you
can group all the pins in one direction in the
port B and the ones in the opposite direction in
the port C. You can fully use the port A pins in
both directions. Otherwise, you should operate
as follow:
1) Reserve two RAM location: one for port B and
one for port C.
2) When writing on port, first write to the
reserved location and then send it to port.
3) When reading from port, first write the
reserved location to port and then read it,
otherwise the output pins may be subject to
unwanted modification because the bus
content is latched also in reading operation.
Be sure to prevent interrupts between the
dummy writing intruction and the reading.
Example:
ldrr 0, 20; RAM 0 is the reserved location for portB
ldpr 1,0; write data to port B

.............
udgi; disables interrupt
ldpr 1,0 ; this dummy instruction causes the port B
latch to be loaded with the right values of the output
pins
ldri 30,10; reads data from port B without modifing
the output pins

uegi; enables the interrupt

N.B.: you can use the port pins in alternate function
normally.

TO PERIPHERAL TTL

PORT A PINTO INPUT REGISTER

FROM PERIPHERAL

FROM OUTPUT REGISTER

FROM CONFIGURATION REGISTER

FROM CONFIGURATION REGISTER

Figure 6.1 Ports A & C Functional Blocks

36/120

ST52T420/E420

TO A/D CONVERTER

CMOS

PORT B PIN

FROM CONFIGURATION REGISTER

TO INPUT REGISTER

FROM PERIPHERAL

FROM OUTPUT REGISTER

FROM CONFIGURATION REGISTER

FROM CONFIGURATION REGISTER

Figure 6.2 Port B Functional Blocks

6.2 Input Mode
The input configuration is selected setting to "1" the
corresponding conf igurat ion register b i t
(REG_CONF 4, 13 and 15) (see paragraph 6.5) .
The ports are configured by using the configuration
registers shown in the following table.

The digital input data are automatically stored in
the Input Registers, but it is not possible to read
directly the single bit of the IR and it is necessary
to copy the value in a RAM location.
The digital data are stored in a RAM location by
using the assembler instruction:
LDRI RAM_Reg Input_i

6.3 Output Mode
The output configuration is selected setting to ’0’
the corresponding configuration register bit
(REG_CONF 4, 13 and 15) (see paragraph 6.5).
The digital data are transferred to the related I/O
Port by means of the Output register, by using the
assembler instructions LDPE or LDPR.
At RESET the Output Registers are ’00000000’.

PORT A PORT B PORT C

IR 9 IR 10 IR 11

Table 6.2 Input Register and I/O Ports

PORT A PORT B PORT C

OR 0 OR 1 OR 2

Table 6.3 Output Register and I/O Ports

PORT A PORT B PORT C

Reg_Conf 4 Reg_Conf 13 Reg_Conf 15

Table 6.1 I/O Port Configuration Registers

6.4 Alternate Functions.

Several ST52x420 pins are configurable to be used
with different functions (see table 1.1).

When an on chip peripheral is configured to use a
pin, it is mandatory to select the correct I/O mode
of the related pin.

For example: if the pin 20 (PA5/T0CLK) has to be
used like external PWM/Timer0 clock, the
Reg_Conf4(5) bit must be set to ’1’.

When the signal is an input of an on-chip
peripheral, the related I/O pin has to be configured
in Input Mode.

When a pin is used as an A/D Converter input, the
related I/O pin is automatically set in tristate. The
analog multiplexer (controlled by the A/D
configuration Register) switches the analog
voltage present on the selected pin to the common
analog rail which is connected to the ADC input.

37/120

ST52T420/E420

It is recommended not to change the voltage level
or loading on any port pin while conversion is
running. Furthermore it is recommended not to
have clocking pins located close to a selected
analog pin.

6.5 I/O Port Configuration Registers

The I/O mode for each bit of the three ports are
selected by using the Configuration Registers 4,
13 and 15 (See Table 6.1) The structure of these
registers is shown in the following tables.

Each bit of the configuration registers sets the I/O
mode of the related port pin.

Bit Name Value Description

0 D0
0 Set the pin 25 in Output

Mode

1 Set the pin 25 in Input Mode

1 D1
0 Set the pin 24 in Output

Mode

1 Set the pin 24 in Input Mode

2 D2
0 Set the pin 23 in Output

Mode

1 Set the pin 23 in Input Mode

3 D3
0 Set the pin 22 in Output

Mode

1 Set the pin 22 in Input Mode

4 D4
0 Set the pin 21 in Output

Mode

1 Set the pin 21 in Input Mode

5 D5
0 Set the pin 20 in Output

Mode

1 Set the pin 20 in Input Mode

6 D6
0 Set the pin 19 in Output

Mode

1 Set the pin 19 in Input Mode

7 D7
0 Set the pin 18 in Output

Mode

1 Set the pin 18 in Input Mode

Reset Configuration ’11111111’

Table 6.4 Ports A REG_CONF 4

Bit Name Value Description

0 D0
0 Set the pin 9 in Output Mode

1 Set the pin 9 in Input Mode

1 D1
0 Set the pin 10 in Output

Mode

1 Set the pin 10 in Input Mode

2 D2
0 Set the pin 11 in Output Mode

1 Set the pin 11 in Input Mode

3 D3
0 Set the pin 12 in Output

Mode

1 Set the pin 12 in Input Mode

4 D4
0 Set the pin 15 in Output

Mode

1 Set the pin 15 in Input Mode

5 D5
0 Set the pin 16 in Output

Mode

1 Set the pin 16 in Input Mode

6 D6
0 Set the pin 17 in Output

Mode

1 Set the pin 17 in Input Mode

7 D7
0 Set the pin 18 in Output

Mode

1 Set the pin 18 in Input Mode

Reset Configuration ’11111111’

Table 6.5 Ports B REG_CONF 13

Bit Name Value Description

0 D0
0 Set the pin 5 in Output Mode

1 Set the pin 5 in Input Mode

1 D1
0 Set the pin 6 in Output Mode

1 Set the pin 6 in Input Mode

2 D2
0 Set the pin 7 in Output Mode

1 Set the pin 7 in Input Mode

3 D3
0 Set the pin 8 in Output Mode

1 Set the pin 8 in Input Mode

4

Not Used5

6

7

Reset Configuration ’1111’

Table 6.6 Port C REG_CONF 15

38/120

ST52T420/E420

Analog Input Option.
The PB0-PB7 pins can be configured to be analog
inputs according to the codes programmed in the
configuration register REG_CONF 14 (See Table
6.7). These analog inputs are connected to the on
chip 8-bit Analog to Digital Converter.

Bit Name Value Description

0 D0
0 pin 9 Digital I/O

1 pin 9 Analog Input

1 D1
0 pin 10 Digital I/O

1 pin 10 Analog Input

2 D2
0 pin 11 Digital I/O

1 pin 11 Analog Input

3 D3
0 pin 12 Digital I/O

1 pin 12 Analog Input

4 D4
0 pin 15 Digital I/O

1 pin 15 Analog Input

5 D5
0 pin 16 Digital I/O

1 pin 16 Analog Input

6 D6
0 pin 17 Digital I/O

1 pin 17 Analog Input

7 D7
0 pin 18 Digital I/O

1 pin 18 Analog Input

Reset Configuration ’11111111’

Table 6.7 Analog Inputs (REG_CONF 14)

PWM/Timers Alternate Functions.
The pins of the Port A and C can be configured to
be I/O of the three PWM/Timers available on the
ST52x420. The configuration of these pins is
performed by using the Configuration Registers
REG_CONF 12 and REG_CONF 16. Anyway the
correct I/O mode of the related pin has to be
selected by means of REG_CONF 4, 13 and 15.

Bit Name Value Description

0 P6SL
1 Pin 6 is configured as Port C

Digital I/O

0 Pin 6 is configured as
PWM/Timer 0 output T0OUT

1 P7SL
1 Pin7 is configured as Port C

Digital I/O

0 Pin 7 is configured as
PWM/Timer 0 output T1OUT

2 P8SL
1 Pin 8 is configured as Port C

Digital I/O

0 Pin 8 is configured as
PWM/Timer 0 output T2OUT

3-7 NC X Not Used

Reset Configuration ’00000000’

Table 6.8 PWM/Timers REG_CONF 16

Bit Name Value Description

0 P24SL
1

Pin 24 is configured as
PWM/Timer 0

complementary output
T0OUT

0 Pin24 is configured as Port A
Digital I/O

1 P23SL
1

Pin 23 is configured as
PWM/Timer 1

complementary output
T1OUT

0 Pin23 is configured as Port A
Digital I/O

2 P22SL
1

Pin 22 is configured as
PWM/Timer 2

complementary output
T2OUT

0 Pin22 is configured as Port A
Digital I/O

3 PASZ
1 PORT A bits = 8

0 PORT A bits = 7

4-7 NC x Not Used

Reset Configuration ’0000’

Table 6.9 PWM/Timers REG_CONF 12

39/120

ST52T420/E420

D7 D6 D5 D4 D3 D2 D1 D0

P24SL: Pin 24 setting

not used

REG_CONF 12
DIGITAL PORT

P23SL: Pin 23 setting

P22SL: Pin 22 setting

PASZ: PORT A size

Figure 6.3 REG_CONF 12

D7 D6 D5 D4 D3 D2 D1 D0

- not used

P6SL: PIN 6 setting
P7SL: PIN 7 setting
P8SL: PIN 8 setting

REG_CONF 16
DIGITAL PORT

Figure 6.4 REG_CONF 16

40/120

ST52T420/E420

7. A/D CONVERTER

7.1 Introduction

The A/D Converter of ST52x420 is an 8-bit analog
to digital converter with up to 8 analog inputs
offering 8 bit resolution with a total accuracy of 1
LSB and a typical conversion time of 4.1 µs with a
20 MHz clock. This period also includes the time of
the integral Sample and Hold circuitry, which
minimizes the need for external components and
allows quick sampling of the signal for the minimum
warping effect and Integral conversion error.

The A/D peripheral converts the input voltage with
a process of successive approximations using a
fixed clock frequency.

A conversion is performed in 78 A/D clock
pulses plus 4 CKM pulses.

The A/D clock is derived from the clock master
(CKM) and it is fixed, to CKM or to CKM divided
by 2, by means of the bit SCK of the A/D
configuration register REG_CONF3 (See table
7.1). The maximum A/D clock frequency has to be
20 MHz.

The conversion range is between the analog
Vss and Vdd references.

The converter uses a fully differential analog input
configuration for the best noise immunity and

precision performances, along with one separate
supply (VDDA), allowing the best supply noise
rejection.
Up to 8 multiplexed Analog Inputs are available. A
group of signals can be converted sequentially by
simply programming the starting address of the last
analog channel to be converted.
Single or continuous conversion mode are
available.
The result of the conversion is stored in an 8-bit
Input Registers (from IR 1 to IR 8).
The A/D converter is controlled through the
Configuration Register REG_CONF 3.
A Power-Down programmable bit allows to set the
A/D converter to a minimum consumption idle
status.
The ST52x420 Interrupt Unit provides one
maskable channel for the End of Conversion (EOC)

7.2 Functional Description
The conversion is monotonic: the result never
decreases if the analog input does not and never
increases if the analog input does not.
If input voltage is greater than or equal to Vdda
(Voltage Reference high) then result is equal to FFh
(full scale) without overflow indication.

AIN0/PB0

AIN1/PB1

AIN2/PB2

AIN3/PB3

AIN7/PB7/PA7

AIN6/PB6

AIN5/PB5

AIN4/PB4

ANALOG

MUX

SUCCESSIVE APPROXMATION

A/D CONVERTER

A/D CHANNEL 7

A/D CHANNEL 6

A/D CHANNEL 5

A/D CHANNEL 4

A/D CHANNEL 3

A/D CHANNEL 2

A/D CHANNEL 1

A/D CHANNEL 0

INPUT REGISTER
1 ÷ 8

SAMPLE

HOLD
&

CH2CH1CH0SCKSEQPOWLPSTR

CONFIGURATION REGISTER

CONTROL

LOGIC

Figure 7.1. A/D Converter Structure

41/120

ST52T420/E420

If input voltage is less than Vss (voltage reference
low) then the result is equal to 00h.

The A/D converter is linear and the digital result of
the conversion is given by the formula:

DigitalResult=255x
InputVoltage

ReferenceVoltage

Where Reference Voltage is Vdda - Vss.

The accuracy of the conversion is described in the
Electrical Characteristics Section.

The A/D converter is not affected by the WAIT
mode.

When the MCU enters HALT mode with A/D
converter enabled, the converter is disabled until
the HALT mode is exited and the start-up delay has
elapsed. A stabilisation time is also required before
accurate conversions can be performed.

7.2.1 Operating Modes
Four main operating modes can be selected by
setting the values of the LP and SEQ bit in the A/D
configuration Register.

One Channel Single Mode
In this mode (SEQ = ’0’’, LP = ’0’) the A/D provides
an EOC signal after the end of channel i-th
conversion; then the A/D waits for a new start

 7 0

CH2 CH1 CH0 SCK SEQ POW LP STR

REG_CONF 3

START/STOP
CONVERSION MODE SEL.
ON/OFF A/D
CONVERSION MODE SEL.
CLOCK SELECTOR
CHANNELS SEL.

Figure 7.2. A/D Configuration Register (REG_CONF3)

event. The channel i-th is identified by the bit CH0,
CH1, CH2.
i.e CH(2:0) = ’011’ means conversion of channel 3
then stop.

 Multiple Channels Single Mode
In this mode (SEQ = ’1’, LP = ’0’) the A/D provides
an EOC signal after the end of the channels
sequence conversion identified by the bit CH0,
CH1, CH2 ; then the A/D waits for a new start event.
i.e. CH(2:0) = ’011’ means conversion of channels
0,1,2 and 3 then stop.
One Channel Continuous Mode
In this mode (SEQ= ’0’’, LP = ’1’) a continuous
conversion flow is entered by a start event on the
channel selected by the bit CH0, CH1, CH2.
i.e CH(2:0) = ’011’ means continuous conversion
of channel 3. At the end of each conversion the
relative IR is updated with the last conversion
result, while the former value is lost.
To stop the conversion STR has to be set to ’0’. If
STR is reseted during a conversion, the ADC will
work until the end of the conversion, generating the
related Interrupt request, if it was activated.

Multiple Channels Continuous Mode
In this mode (SEQ = ’1’’, LP = ’1’) a continuous
conversion flow is entered by a start event on the
channels selected by the bits CH0, CH1, CH2.

42/120

ST52T420/E420

i.e CH(2:0) = ’011’ means continuous conversion
of channel 0,1,2 and 3.

At the end of each conversion the relative IRs are
updated with the last conversion results, while the
former values are lost.

To stop the conversion STR has to be set to ’0’. If
STR is reseted during a conversion, the ADC will
work until the end of the conversion, generating the
related Interrupt request, if it was activated.

7.2.2 Power down Mode

Before enabling any A/D operation mode, set the
POW bit of the A/D configuration register to ’1’ at
least 60 µs before the first conversion starts to
enable the biasing circuit inside the analog section
of the converter. Clearing the POW bit (POW = ’0’)
is useful when the A/D is not used so reducing the
total chip power consuption. This state is also the
reset configuration and it is forced by hardware
when the core is in HALT state (after a HALT
istruction execution).

7.3 A/D Registers Description

The result of the conversions of the 8 available
channels are loaded in the 8 Input Registers from
the decimal addres 1 to the decimal address 8. (IR
(1:8) see table 2.2)). Every IR(1:8) is reloaded with
a new value at the end of the conversion of the
correspondent analog input.

By using the assembler istruction:

LDRI RAM_Reg. IR_i

the value stored in the i-th IR is transferred on the
RAM location RAM_Reg.

The A/D configuration register is the REG_CONF3.
The figure 7.2 shows the structure of this register.
This register manages the A/D logic operation.
The A/D configuration register (REG_CONF 3) is
programmable as following:

b7-b5 = CH2, CH1, CH0: Start Conversion
Address. These 3 bits define the last analog input.
The first analog input is converted, then the
address is incremented for the successive
conversion, until the channel identified by
CH0-CH2 is converted. The (CH2, CH1, CH0) bits
define the group of channels to be scanned. When
setting CH2=0 CH1=0 CH0=0 only channel 0 is
converted.

b4 = SCK: Master clock divider. The ST52x420 is
able to work with a clock frequency up to 20 MHz.
It is useful to set SCK = ’1’ also when the clock
master is lower than 10 MHz and an high accuracy
is required.

b3 = SEQ: Multiple/Single channel. When SEQ is
set to ’0’ a the channel identified by CH(2:0) is
converted. If SEQ is set to ’1’ the group of channels
identified by CH(2:0) are converted.

b2= POW: Power Up/ Power Down. A logical ’1’
enables the A/D logic and analog circuitry.

A logical level ’0’ disables all power consuming
logic, thus allowing a low power idle status.

b1 = LP:Continuous/Single. When this bit is set to
’1’ (continuous mode), the first conversions
sequence are started by the STR bit then a
continuous conversion flow is processed.

When LP=’0’ (single mode) only one sequence of
conversions is started when STR is set.

b0 = STR: Start/Stop. A logical level ’1’ enables the
starting of a conversios sequences; a logical level
’0’ stops the conversion. When the A/D is running
in the Single Modes (LP=’0’), this bit is hardware
reset at the end of a conversion sequence.

Bit Name Value Description

0 STR
0 Stop Conversion

1 Start Conversion

1 LP
0 Single Conversion

1 Continuous Conversions

2 POW
0 A/D OFF

1 A/D ON

3 SEQ
0 Single Channel Conv.

1 Multiple Channels Conv

4 SCK
0 Clock not Divided

1 Clock Divided

Table 7.1 A/D Conf. Register (Reg_Conf 3)

43/120

ST52T420/E420

8 WATCHDOG TIMER
8.1 Functional Description
The Watchdog Timer (WDT) is used to detect the
occurrence of a software fault, usually generated
by external interference or by unforeseen logical
conditions, which causes the application program
to abandon its normal sequence. The WDT circuit
generates an MCU reset on expiry of a
programmed time period, unless the program
refreshes the WDT before the end of the
programmed time delay.
16 different delay can be selected by using the
WDT configuration register.
If the WDT is activated (by using the assembler
instruction WDTRFR) after the end of the delay
programmed by the configuration register, it start a
reset cycle pulling low the reset pin.
The application program once activated the WDT
has to refresh this peripheral (by the WDTRFR
instruction) at regular intervals during normal
operation to prevent an MCU reset.
To stop the WDT during the user program excution
the instruction WDTSLP has to be used.
The working frequency of the WDT (PRES CLK in
the Figure 8.1) is equal to the clock master CLKM.

The clock master is then divided by 500 thus
obtaining the WDT CLK signal that is used to fix the
timeout of the WDT.

According to the WDT configuration register values
it possible to define a WDT delay. Changing the
clock master frequency the timeout delay can be
calculated according to the configuration register
values REG_CONF 2 as described in the following
section.

For example, when the clock master is 5 MHz, the
delay could be between 0.1 mS and 937.5 mS .

WDT timeout period (mS)

min 1*(500/CLKM)

max 9375*(500/CLKM)

Table 8.1 Watchdog Timing range (CLK=5

D0D1D2D3

REG_CONF 2

RESET

WDTRFR

PRES CLK = CLK MASTER

WDTSLP

PRESCALER

WDT

RESET

GENERATOR

RESETWTD CLK

Figure 8.1 Watchdog Block Diagram

44/120

ST52T420/E420

Bit Name Value Timeout Values (WDT
CLK pulses)

0

D(3:0)

0000 1

0001 625

0010 1250

0011 1875

1

0100 2500

0101 3125

0110 3750

0111 4375

2

1000 5000

1001 5625

1010 6250

1011 6875

3

1100 7500

1101 16250

1110 8750

1111 9375

4-7 NC x Not Used

Reset Configuration ’0000’

Table 8.2 WDT REG_CONF 2

8.2 Configuration Register 2 Description
The WDT timeout is defined setting the value of the
REG_CONF 2. The first 4 bits of this register are
used thus obtaining 16 different delays as shown
in the table 8.2. In the table 8.2 the timeout is
expressed by using the number of WDT CLK. The
WDT CLK is derived from the clock master by a
division factor of 500. The Timeout is then obtained
by multipling the WDT CLK pulse length for the
number of pulses defined by the configuration
register REG_CONF 2. The Table 8.4 shows the
pulses length for typical values of the clock master.
The Table 8.3 shows the timeout WDT values when
the Master Clock is 5 MHz.

Bit Name Value Timeout Values (mS)

0

D(3:0)

0000 0.1

0001 62.5

0010 125

0011 187.5

1

0100 250

0101 312.5

0110 375

0111 437.5

2

1000 500

1001 562.5

1010 625

1011 687.5

3

1100 750

1101 1625

1110 875

1111 937.5

4-7 NC x Not Used

Reset Configuration ’0000’

Table 8.3 Timeout Values with CLK=5 MHz

MASTER CLK
(MHz)

WDT CLK
(kHz)

WDT CLK
PULSE

LENGTH (mS)

1 2 0.5

4 8 0.125

5 10 0.1

8 16 0.0625

10 20 0.05

20 40 0.025

Table 8.4 Typical WDT CLK Pulse Length

45/120

ST52T420/E420

9. PWM/TIMERS

ST52x420 offers three on-chip PWM/Timer
peripherals :TIMER0, TIMER1 and TIMER2.

The ST52x420 timers have the same internal
structure, that, basically, consists of an 8-bit
counter with a 16-bit programmable prescaler, thus
giving a maximum count of 224 (see figure 9.1).

Following, the generic timer is called Timer x,
where x can be 0, 1 or 2.

Each timer has two different working modes, that
can be selected by setting the correspondent
TxMODE bits of REG_CONF5, REG_CONF8 and
REG_CONF10 registers: Timer Mode and PWM
(Pulse Width Modulation) Mode.

All the Timers have Autoreload Functions in PWM
Mode.

Each t imer output is avai lab le, wi th i ts
complementary signal, on external pins, by setting
PxSL bits of REG_CONF12 and REG_CONF16
(see tables 9.8 and 9.9).

REMARKS: To enable a timer output (TxOUT or
TxOUT) the related pin must be configured in
Output Mode by setting REG_CONF4, and
REG_CONF15 registers (see table 6.4 and 6.6)

In particular, TIMER 0 can use also external Timer0
START/STOP signals (Input capture and Output
compare), external Timer 0 RESET signal, and
external Timer 0 clock: T0STRT, T0RES and
T0CLK pins.

REMARKS: To use T0RST, T0STR, T0CLK
external signals the related pins must be
configured in Input Mode by sett ing
REG_CONF4 and REG_CONF7 registers (see
table 6.4 and 9.7)

For each timer, the content of the 8-bit counter is
incremented on the Rising Edge of the 16-bit
prescaler output (PRESCOUT) and it can be read
at any instant of the counting phase and loaded in
a location of the RAM memory. The PWM/Timer x
Counter va lue can be read f rom the
PWM_x_COUNT Input Register (Input Registers
12, 14 or 16. See table 2.2)

The PWM/Timer x Status can be read from the
PWM_x_STATUS Input Register (Input Registers
13, 15 or 17. See tables 2.2 and 9.10).

9.1 Timer Mode

Timer Mode is selected fixing TxMODE bit of
REG_CONF5, REG_CONF8 and REG_CONF10
equal to 0 (see tables 9.1, 9.4 and 9.6).

Each TIMERx requires three signals: Timer Clock
(TMRCLKx), Timer Reset (TxRES) and Timer Start
(TxSTRT) (see Figure 9.1). Each of these signals
can be generated internally, or, only for Timer 0,
externally by setting T0RST, T0STR, T0CLK bits of
REG_CONF7 register.

TMRCLKx is the Prescaler x output, that
increments, on the rising edge, the Counter x value.
TMRCLKx is obtained from the internal clock signal

BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 14 BIT 15

BIT 3BIT 0 BIT 1 BIT 2 BIT 6BIT 4 BIT 5 BIT 7

17 - 1 MULTIPLEXER

16-BIT PRESCALER

8-BIT COUNTER

PRESCx

CLKM

TMRCLK

TxRES

TxSTRT

Figure 9.1. Timer Peripheral Block Diagram

46/120

ST52T420/E420

(CLKM) or, only for TIMER0, from the external
signal provided on the T0CLK pin.

REMARKS: The external clock signal, applied
on T0CLK pin, must have a frequency at least
two times smaller than the internal master
clock.

The prescaler output can be selected by setting
PRESCx bit of REG_CONF6, REG_CONF9 and
REG_CONF11 registers (see tables 9.2, 9.5 and
9.7).

TxRES resets to zero the content of the 8-bit
counter x. It is generated by the TIRSTx and
TxMSK bits of REG_CONF5, REG_CONF7,
REG_CONF8 and REG_CONF10 registers (see
tables 9.1, 9.3, 9.4 and 9.6).

TxSTRT signal start/stop the Timer x counting.
This signal is forced by setting the correspondent
TISTRx bit of REG_CONF5, REG_CONF8 and
REG_CONF10 registers (see tables 9.1, 9.4 and
9.6).

TxMSK bits mask the reset of each timer and, for
this reason, they can be use to synchronize a
simultaneous start of the timers, by means, for
example, of the following procedure that starts
three timers:

1) TIRST0 = TIRST1 = TIRST2 = 0,

2) TISTR0 = TISTR1 = TISTR2 = 0,

3) T0MSK = T1MSK = T2MSK = 1,

4) TIRST0 = TIRST1 = TIRST2 = 1,

5) TISTR0 = TISTR1 = TISTR2 = 1,

6) T0MSK = T1MSK = T2MSK = 0,

 (all timers start simultaneously)

When TxMSK is 1 the TIMER x is reseted.

TIMER 0 START/STOP can be given externally on
the T0STRT pin. In this case, T0STRT signal allows
to work in two different modes, by setting the
TESTR configuration bit of REG_CONF5 register
(see figure 9.2) (Input capture):

LEVEL (Time Counter): If the T0STRT signal is
high the Timer starts the count. When the T0STRT
is low the counting is stopped and the current value
is stored in the PWM_0_COUNT Input Register.

EDGE(Period Counter): After the reset, on the first
T0STRT rising edge, the TIMER 0 starts the
counting and, at the next rising edge, it is stopped.
In this way it is possible to measure the period of
an external signal.

Timer Output
Type 1

Type 2

Prescout*Counter

Figure 9.3. TIMEROUT Signal Type

Level

Edge

start stop start

start

stop

start

0 1 104432

Reset

Clock

Counted

Figure 9.2. Timer 0 External START / STOP Mode

47/127

ST52T420/E420

t

t

255

compare
value

reload
register

0

PWM
Output

Ton

T

Fig. 9. PWM Mode with Auto Reload

The Timer x output signal, TIMERxOUT, is a signal
with a frequency equal to the 16 bit-Prescaler x
output signal, TMRCLKx, divided by the
PWM_x_COUNT Output Register value (8 bit)
(Output Registers 3, 5 or 7. See table 2.4) + 1, that
is the value to count.

If the PWM_x_COUNT Output Register value is
zero (default value), the Timer x output signal,
TIMERxOUT, is always at low level

REMARKS: The first period of TIMERxOUT
signal is shorter than the other periods of a
∆t=1/CLKM

TIMERxOUT waveform can be of two types:

type 1: TIMERxOUT waveform equal to a square
wave with a 50% duty-cycle

type 2: TIMERxOUT waveform equal to a pulse
signal with the pulse duration equal to the Prescaler
x output signal.

For each Timer x, the TIMERxOUT waveform type
can be selected by setting the correspondent
TMRWx bit of REG_CONF6, REG_CONF9 and
REG_CONF11 registers (see tables 9.2, 9.5 and
9.7)

9.2 PWM Mode
The PWM working mode, for each timer, is
obtained by setting at 1 the correspondent
TxMODE bits of REG_CONF5, REG_CONF8 and
REG_CONF10 registers (see tables 9.1, 9.4 and
9.6).
TIMERxOUT, in PWM Mode, consists of a signal,
with a fixed period, whose duty cycle can be
modified by the user.
REMARKS: The first period of TIMERxOUT
signal is shorter than the other periods of a
∆t=1/(2*TMRCLKx) - 1/CLKM.
The TIMERxOUT signal can be available on
TxOUT pin and the TIMERxOUT inverted signal
can be available on TxOUT pin, by setting PxSL
bits of REG_CONF12 and REG_CONF16 (see
tables 9.8 and 9.9)
The PWM TIMERxOUT period can be fixed, by
setting the 16-bit prescaler x output and an initial
autoreload 8-bit counter value stored in the
PWM_x_RELOAD Output Register, as shown in
figure 9.4.

48/120

ST52T420/E420

The PWM_x_RELOAD Output Register value is
automatically reloaded when Counter x restarts to
count.

The 16-bit Prescaler x divides the master clock,
CLKM, or, only for TIMER0, the external T0CLK
signal, by the 16-bit Prescaler x.

REMARKS: The external clock signal, applied
on T0CLK pin, must have a frequency at least
two times smaller than the internal master
clock.
The Prescaler x output can be selected by setting
PRESCx bit of REG_CONF6, REG_CONF9 and
REG_CONF11 registers (see tables 9.2, 9.5 and
9.7).

When the Counter x reaches the Peripheral
Register PWM_x_COUNT value (Compare Value),
the TIMERxOUT signal changes from high to low
level, up to the next counter start.

The period of the PWM signal is obtained by using
the following relation:

T=(255 - PWM_x_RELOAD) *TMRCLKx

where TMRCLKx is the output of the 16-bit
prescaler x.

The duty cycle of the PWM signal is controlled by
the Output Register PWM_x_COUNT:

Ton =(PWM_x_COUNT- PWM_x_RELOAD)*

 TMRCLKx

If the PWM_x_COUNT Output Register value is
255 the TIMERxOUT signal is always at high level.

If the Output Register PWM_x_COUNT is 0, or
less than the PWM_x_RELOAD value,
TIMERxOUT signal is always at low level.

REMARKS. I f PWM_x_RELOAD value
increases the duty cycle resolution decreases.
PWM_x_RELOAD=255 is not acceptable.
By using a 20 MHz clock master it is possible to
obtain a PWM frequency in the range 1.2 Hz to
78.43 KHz.

9.3 Timer Interrupt
The TIMERx can be programmed to generate an
Interrupt request until the end of the count or when
there is an external TSTART signal. The Timer can
generate programmable Interrupts in to 4 different
modes:

Interrupt mode 1: Interrupt on counter Stop.

Interrupt mode 2: Interrupt on Rising Edge of
TIMEROUT.

Interrupt mode 3: Interrupt on Falling Edge of
TIMEROUT.
Interrupt mode 4: Interrupt on both edges of
TIMEROUT.
The Interrupt mode can be selected by means of
INTSLx and INTEx bits of the REG_CONF5,
REG_CONF8 and REG_CONF10 registers (see
tables 9.1, 9.4 and 9.6).

49/127

ST52T420/E420

Bit Name Value Description

0 TIRST0
0 Internal RESET enabled

1 Internal RESET disabled

1 TERST
0 External RESET on Level

1 External RESET on Edge

2 TISTR0
0 Internal STOP

1 Internal START

3 TESTR
0 External START on Level

1 External START on Edge

4

INTE0

00
TIMER0 Interrupt on
TIMER0OUT Falling Edge

01
TIMER0 Interrupt on
 TIMER0OUT Rising Edge

5
10

TIMER0 Interrupt on Both
Edges of TIMER0OUT

11 - not used

6 INTSL0

0
TIMER0 Interrupt on
Counter Stop

1
TIMER0 Interrupt on
TIMER0OUT

7 T0MODE 0 TIMER MODE

1 PWM MODE

Table 9.1. Configuration Register 5

D7 D6 D5 D4 D3 D2 D1 D0

TIRST0: Timer 0 Internal RESET
TERST: Timer 0 External RESET on Edge/Level
TISTR0: Timer 0 Internal START
TESTR: Timer 0 External START on Edge/Level

INTE0: Timer 0 Interrupt on TIMER0OUT Rising/Falling Edge

INTSL0: Timer 0 Interrupt Source selection
T0MODE: Timer 0 working mode

REG_CONF 5
TIMER 0

Figure 9.4. Configuration Register 5

50/120

ST52T420/E420

Bit Name Value Description

0

PRESC0

00000 TIMER0 Clock = CLKM / 1

00001 TIMER0 Clock = CLKM / 2

00010 TIMER0 Clock = CLKM / 4

00011 TIMER0 Clock = CLKM / 8

1

00100 TIMER0 Clock = CLKM / 16

00101 TIMER0 Clock = CLKM / 32

00110 TIMER0 Clock = CLKM / 64

2

00111 TIMER0 Clock = CLKM / 128

01000 TIMER0 Clock = CLKM / 256

01001 TIMER0 Clock = CLKM / 512

3

01010 TIMER0 Clock = CLKM / 1024

01011 TIMER0 Clock = CLKM / 2048

01100 TIMER0 Clock = CLKM / 4096

4

01101 TIMER0 Clock = CLKM / 8192

01110 TIMER0 Clock = CLKM/16384

01111 TIMER0 Clock =CLKM /32768

10000 TIMER0 Clock =CLKM /65536

5 TMRW0

0
TIMER0OUT Waveform
equal to pulse wave

1
TIMER0OUT Waveform
equal to square wave

6 - - - not used

Table 9.2. Configuration Register 6 Description

D7 D6 D5 D4 D3 D2 D1 D0

PRESC0: Timer 0 Prescaler

TMRW0: TIMER0OUT waveform

not used

REG_CONF 6
TIMER 0

Figure 9.5. Configuration Register 6

51/127

ST52T420/E420

D7 D6 D5 D4 D3 D2 D1 D0

T0RST: Timer 0 RESET Mode

T0STR: Timer 0 START Mode

T0CLK: Timer 0 Clock Source
T0MSK: Timer 0 RESET Mask
T2MSK: Timer 2 RESET Mask
T1MSK: Timer 1 RESET Mask

REG_CONF 7
TIMER 0, TIMER 1, TIMER2

Figure 9.6. Configuration Register 7

Bit Name Value Description

0

T0RST

00 TIMER0 RESET Internal

01 TIMER0 RESET External

1
10

TIMER0 RESET External or
Internal

11 - not used

2

T0STR

00 TIMER0 START Internal

01 TIMER0 START External

3
10

TIMER0 START External or
Internal

11 - not used

4 T0CLK
0 TIMER0 Clock Internal

1 TIMER0 Clock External

5 T0MSK

0
TIMER0 reset
synchronization mask.
TIMER0 RESET enabled

1
TIMER0 reset
synchronization mask.
TIMER0 RESET masked

6 T2MSK

0
TIMER2 reset
synchronization mask.
TIMER2 RESET enabled

1
TIMER2 reset
synchronization mask.
TIMER2 RESET masked

7 T1MSK

0
TIMER1 reset
synchronization mask.
TIMER1 RESET enabled

1
TIMER1 reset
synchronization mask.
TIMER1 RESET masked

Table 9.3. Configuration Register 7 Description

52/120

ST52T420/E420

D7 D6 D5 D4 D3 D2 D1 D0

TIRST1: Timer 1 RESET
- not used
TISTR1: Timer 1 START
- not used

INTE1: Timer 1 Interrupt on TIMER1OUT Rising/Falling Edge

INTSL1: Timer 1 Interrupt Source selection
T1MODE: Timer 1 working mode

REG_CONF 8
TIMER 1

Figure 9.7. Configuration Register 8

Bit Name Value Description

0 TIRST1
0 TIMER 1 RESET enabled

1 TIMER 1 RESET disabled

1 - - - not used

2 TISTR1
0 TIMER 1 STOP

1 TIMER 1 START

3 - - - not used

4

INTE1

00
TIMER1 Interrupt on
TIMER1OUT Falling Edge

01
TIMER1 Interrupt on
 TIMER1OUT Rising Edge

5
10

TIMER1 Interrupt on Both
Edges of TIMER1OUT

11 - not used

6 INTSL1

0
TIMER1 Interrupt on Counter
Stop

1
TIMER1 Interrupt on
TIMER1OUT

7 T1MODE 0 TIMER MODE

1 PWM MODE

Table 9.4. Configuration Register 8 Description

53/127

ST52T420/E420

Bit Name Value Description

0

PRESC1

00000 TIMER1 Clock = CLKM / 1

00001 TIMER1 Clock = CLKM / 2

00010 TIMER1 Clock = CLKM / 4

00011 TIMER1 Clock = CLKM / 8

1

00100 TIMER1 Clock = CLKM / 16

00101 TIMER1 Clock = CLKM / 32

00110 TIMER1 Clock = CLKM / 64

2

00111 TIMER1 Clock = CLKM / 128

01000 TIMER1 Clock = CLKM / 256

01001 TIMER1 Clock = CLKM / 512

3

01010 TIMER1 Clock = CLKM / 1024

01011 TIMER1 Clock = CLKM / 2048

01100 TIMER1 Clock = CLKM / 4096

4

01101 TIMER1 Clock = CLKM / 8192

01110 TIMER1 Clock = CLKM/16384

01111 TIMER1 Clock =CLKM /32768

10000 TIMER1 Clock =CLKM /65536

5 TMRW1

0
TIMER1OUT Waveform
equal to pulse wave

1
TIMER1OUT Waveform
equal to square wave

6 - - - not used

7 - - - not used

Table 9.5. Configuration Register 9 Description

D7 D6 D5 D4 D3 D2 D1 D0

PRESC1: Timer 1 Prescaler

TMRW1: TIMER1OUT waveform

not used

REG_CONF 9
TIMER 1

Figure 9.8. Configuration Register 9

54/120

ST52T420/E420

Bit Name Value Description

0 TIRST2
0 TIMER 2 RESET enabled

1 TIMER 2 RESET disabled

1 - - - not used

2 TISTR2
0 TIMER 2 STOP

1 TIMER 2 START

3 - - - not used

4

INTE2

00
TIMER2 Interrupt on
TIMER2OUT Falling Edge

01
TIMER2 Interrupt on
 TIMER2OUT Rising Edge

5
10

TIMER2 Interrupt on Both
Edges of TIMER2OUT

11 - not used

6 INTSL2

0
TIMER2 Interrupt on Counter
Stop

1
TIMER2 Interrupt on
TIMER2OUT

7 T2MODE 0 TIMER MODE

1 PWM MODE

Table 9.6. Configuration Register 10

D7 D6 D5 D4 D3 D2 D1 D0

TIRST2: Timer 2 RESET
- not used
TISTR2: Timer 2 START
- not used

INTE2: Timer 2 Interrupt on TIMER2OUT Rising/Falling Edge

INTSL2: Timer 2 Interrupt Source selection
T2MODE: Timer 2 working mode

REG_CONF 10
TIMER 2

Figure 9.9. Configuration Register 10

55/127

ST52T420/E420

D7 D6 D5 D4 D3 D2 D1 D0

PRESC2: Timer 2 Prescaler

TMRW2: TIMER2OUT waveform

not used

REG_CONF 11
TIMER 2

Figure 9.10. Configuration Register 11

Bit Name Value Description

0

PRESC2

00000 TIMER2 Clock = CLKM / 1

00001 TIMER2 Clock = CLKM / 2

00010 TIMER2 Clock = CLKM / 4

00011 TIMER2 Clock = CLKM / 8

1

00100 TIMER2 Clock = CLKM / 16

00101 TIMER2 Clock = CLKM / 32

00110 TIMER2 Clock = CLKM / 64

2

00111 TIMER2 Clock = CLKM / 128

01000 TIMER2 Clock = CLKM / 256

01001 TIMER2 Clock = CLKM / 512

3

01010 TIMER2 Clock = CLKM / 1024

01011 TIMER2 Clock = CLKM / 2048

01100 TIMER2 Clock = CLKM / 4096

4

01101 TIMER2 Clock = CLKM / 8192

01110 TIMER2 Clock = CLKM/16384

01111 TIMER2 Clock =CLKM /32768

10000 TIMER2 Clock =CLKM /65536

5 TMRW2

0
TIMER2OUT Waveform
equal to pulse wave

1
TIMER2OUT Waveform
equal to square wave

6 - - - not used

7 - - - not used

Table 9.7. Configuration Register 11

56/120

ST52T420/E420

D7 D6 D5 D4 D3 D2 D1 D0

P24SL: Pin 24 setting

not used

REG_CONF 12
DIGITAL PORT

P23SL: Pin 23 setting

P22SL: Pin 22 setting

PASZ: PORT A size

Figure 9.11. Configuration Register 12

Bit Name Value Description

0 P24SL
0

Pin 24 equal to PORT A
Digital I/O

1 Pin 24 equal to T0OUT

1 P23SL
0

Pin 23 equal to PORT A
Digital I/O

1 Pin 23 equal to T1OUT

2 P22SL
0

Pin 22 equal to PORT A
Digital I/O

1 Pin 22 equal to T2OUT

3 PASZ
0 PORT A bits = 7

1 PORT A bits = 8

4 - - - not used

5 - - - not used

6 - - - not used

7 - - - not used

Table 9.8. Configuration Register 12

57/127

ST52T420/E420

Bit Name Value Description

0 P6SL
1

Pin 6 equal to PORT C
Digital I/O

0 Pin 6 equal to T0OUT

1 P7SL
1

Pin 7 equal to PORT C
Digital I/O

0 Pin 7 equal to T1OUT

2 P8SL
1

Pin 8 equal to PORT C
Digital I/O

0 Pin 8 equal to T2OUT

3 - - - not used

4 - - - not used

5 - - - not used

6 - - - not used

7 - - - not used

Table 9.9. Configuration Register 16

D7 D6 D5 D4 D3 D2 D1 D0

- not used

P6SL: PIN 6 setting
P7SL: PIN 7 setting
P8SL: PIN 8 setting

REG_CONF 16
DIGITAL PORT

Figure 9.11. Configuration Register 16

58/120

ST52T420/E420

Bit Name Value Description

0 STR0ST
0 TIMER 0 is STOP

1 TIMER 0 is START

1 RST0ST
0 TIMER 0 is RESET

1 TIMER 0 is NOT RESET

2 - - - not used

3 - - - not used

4 - - - not used

5 - - - not used

6 - - - not used

7 - - - not used

Table 9.10 Input Registers 13. PWM_0_STATUS

Bit Name Value Description

0 STR1ST
0 TIMER 1 is STOP

1 TIMER 1 is START

1 RST1ST
0 TIMER 1 is RESET

1 TIMER 1 is NOT RESET

2 - - - not used

3 - - - not used

4 - - - not used

5 - - - not used

6 - - - not used

7 - - - not used

Table 9.11 Input Registers 15. PWM_1_STATUS

Bit Name Value Description

0 STR2ST
0 TIMER 2 is STOP

1 TIMER 2 is START

1 RST2ST
0 TIMER 2 is RESET

1 TIMER 2 is NOT RESET

2 - - - not used

3 - - - not used

4 - - - not used

5 - - - not used

6 - - - not used

7 - - - not used

Table 9.12 Input Registers 17. PWM_2_STATUS

59/127

ST52T420/E420

Symbol Parameter Value Unit

VDD Supply Voltage -0.5 to 7 V

VI Input Voltage VSS-0.3 to VDD+0.3
(1) V

VO Output Voltage VSS-0.3 to VDD+0.3
(1) V

VDDA, VSSA Analog Supply Voltage VSS-0.3 to VDD+0.3
(1) V

VPP EPROM Programming Voltage 13 V

IO
Standard Output Source Sink Current ±16 mA

Operating TemperatureST52x420B /x -25 to +85 °C

TSTG Storage Temperature -65 to +150 °C

Table 10.1. Absolute Maximum Ratings

Note: Stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating
sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
1. Within these limits, clamping diodes are garanteed to be not conductive.

10 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings
This product contains devices to protect the inputs
against damage due to high static voltages,
however it is advised to take normal precaution to
avoid any voltage higher than maximum rated
voltages.
For proper operation it is recommended that VI and
VO must be higher than VSS and smaller than VDD.
Reliability is enhanced if unused inputs are
connected to an appropriated logic voltage level

60/120

ST52T420/E420

 (VSS or VDD) RECOMMENDED OPERATING CONDITIONS
(Operating Condition: VDD=5V±5%-TA= -25 °C to 85 °C, unless otherwise specified)

Symbol Parameters Test Conditions Min Typ Max Unit

VDD Operating Supply Voltage(1) , (2) fOSC = 20 MHz 4.75 5.0 5.25 V

VPP Programming Voltage 11.4 12 12.6 V

VO Ouput Voltage VSS VDD V

VDDA, VSSA Analog Supply Voltage (1)
Vss ≤ VSSA < VDDA ≤ VDD VSS VDD V

fOSC Oscillator Frequency
(3) 1 20 MHz

NOTE:
1) The maximum difference between VSS and VSSA, and between VDD and VDDA, must be, in module, less
than 0.6 V. The minimum value of VDDA is 3 V.
2) VDD depend on fOSC, see figure 10.1.
3) The fOSC min allowed to use the A/D Converter is 2 MHz

Table 10.2. Recommended Operation Condition

0

2

4

6

8

10

12

14

18

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

VDD(V)

f o
sc

. m
ax

 (
M

H
z)

Functionality not guaranteed in this area

Functionality guaranteed in this areaFunctionality not guaranteed in this area

Fig. 10.1 fosc Maximum Operating Fraquency vs VDD supply

NOTE: The data shown in this figure are guaranteed by design and not by testing phase.

61/120

ST52T420/E420

Symbol Parameter Test Conditions Min Typ Max Unit

VIL

CMOS type Low Level Input Voltage. Port
B pins. see fig.10.7

VDD =5V,
 TA=25°C.

2

VTTL type Schmitt trig. Low Level Input
Voltage. Port A and Port C pins. see fig.10.6 0.8

TTL type Schmitt trig. Low Level Input
Voltage. RESET pins. see fig.10.6 0.8

VIH

CMOS High Level Input Voltage. Port B
pins. see fig.10.7

VDD =5 V,
TA=25°C.

3.3

VTTL type Schmitt trig. High Level Input
Voltage. Port A and Port C pins. see fig.10.6 2.2

TTL type Schmitt trig. High Level Input
Voltage. RESET pins. see fig.10.6 2.2

VOL Standard Low Level Output Voltage IOL =8mA 0.4 V

VOH Standard High Level Output Voltage IOL =-8mA VDD-0.5 V

VHys TTL type Schmitt trig. Hysteresis Voltage see fig. 10.6 1.4 V

IIL Low Level Leakage Input Current VI=VSS -1 µA

IIH High Level Leakage Input Current VI=VDD +4 µA

IDD

Supply Current in RUN mode
VPP connected with

Vss;
FOSC= 10 MHz

10 mA

Supply Current in HALT mode (1) 1 10 µA

IDDA

Analog Supply Current in RUN mode
VPP connected with

Vss;
FOSC= 10 MHz

0.34 mA

Analog Supply Current in HALT mode (1) 0.2 µA

Note:
The Supply Currents in WAIT mode (IDD and IDDA) depend on the active peripherals.

1) These values are guaranteed by design and not by testing

Table 10.3 DC Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS
(Operating Condition: VDD=5V±5%-TA= -25 °C to 85 °C, unless otherwise specified)

62/120

ST52T420/E420

Symbol Parameter Test Conditions Min Typ Max Unit

RS Input protection Resistor All Input Pins 1 kΩ

CS Pin Capacitance All Input Pins 5 pF

Table 10.4. AC Electrical Characteristics

AC ELECTRICAL CHARACTERISTICS
(Operating Condition: VDD=5V±5%-TA= -25 °C to 85 °C, unless otherwise specified)

Symbol Parameters Test Conditions Min Typ Max Unit

fOSC Oscillator Frequency 1 20 MHz

tCLH Clock High 25 500 ns

tCLL Clock Low 25 500 ns

tSET Setup see fig 10.2 5 ns

tHLD Hold see fig. 10.2 5 ns

tWRESET Minimum Reset Pulse Width FOSC=20 MHz 100 ns

tWINT Minimum External Interrupt Pulse Width FOSC=20 MHz 100 ns

tIR Input Rise Time see fig.10.3 15 ns

tIF Input Fall Time see fig.10.3 15 ns

tOR Output Rise Time CLOAD=10 pF
see fig.10.2 10 ns

tOF Output Fall CLOAD=10 pF
see fig.10.3 10 ns

Table 10.5. Timing Parameters

Figure 10.2. Data Input Timing Figure 10.3. I/O Rise and Fall Timing

63/120

ST52T420/E420

DEVICE

C S

RS

V
SS

V
0UT

V
IN

V
SS

V
DD

Figure 10.4. PORT A and PORTC Pin Equivalent Circuit

DEVICE

C S

RS

V
SS

V
0UT

V
IN

V
SS

V
DD

Figure 10.5. PORT B Pin Equivalent Circuit

64/120

ST52T420/E420

0.5 0.8 1.0 1.5 2.2 2.50

1

2

3

4

5

V (V)
0

V = 5V
DD

T = 25°C
A

(TYPICAL)

Figure 10.6. TTL-level Input Schmitt Trigger

1.0 2.0 3.0 4.03.30

1

2

3

4

5

V (V)
0

V = 5V
DD

T = 25°C
A

(TYPICAL)

5.0

Figure 10.7 PORT B pins CMOS-level Input

TIMER CHARACTERISTICS
(Operating Condition: VDD=5V±5%-TA=-25 °C to 85 °C, unless otherwise specified)

Symbol Parameter Min Typ Max Unit

tRES Resolution 1/FOSC µs

fIN
External Input Frequency on TIMER0
Internal Input Frequency on timer

10
20 MHz

tW Pulse Width on TIMEROUT pin 1/FOSC µs

Table 10.7. Timer Characteristics

65/120

ST52T420/E420

A/D CONVERTER CHARACTERISTICS
(Operating Condition: VDD=5V±5%- TA=-25 °C to 85 °C, unless otherwise specified)

Symbol Parameter Test Conditions Min Typ Max Unit

Res Resolution 8 bit

ATOT Total Accuracy (1)
FOSC > 5 MHz

 FOSC > 10 MHz
FOSC = 20 MHz

±1 LSB

tC Conversion Time Fosc measured in MHz 82/Fosc 160/Fosc µs

VAN Conversion Range VSSA VDDA V

VZI Zero Scale Voltage Conversion result=
 00 Hex VSSA V

VFS Full Scale Voltage Conversion result=
 FF Hex VDDA V

ARI Analog Input Resistance fOSC = 20 MHz 1 k Ω

ACIN Analog Input Capacitance 25 pF

Notes: 1. Noise at VDDA, VSSA <40 mV

Table 10.8. A/D Converter Characteristics

66/120

ST52T420/E420

INSTRUCTION SET

ADD
Addition

Format: add dst, src

Operation: dst ⇐ dst + src

Description:
The content of the RAM location specified as source is added to the content of the destination location,
leaving the result in the destination.

Flags: Z set if result is zero, cleared otherwise.
C set if overflow, cleared otherwise.
S not affected.

Bytes: 3

Cycles: 17

Example: If the RAM location 20 contains the value 45 and the RAM location 11 contains the
value 15, then the instruction

add 20, 11 0010000 000010100 00001011

causes the location 20 of the RAM to be loaded with the value 60.

If the location 20 contains the value 200 and the location 11 contains the value 100,
the instruction causes the location 20 to be loaded with the value 44 (result-256) and
the C flag to be set.

67/120

ST52T420/E420

ADDO
Addition with Offset

Format: addo dst, src

Operation: dst ⇐ dst + src - 128

Description: The content of the RAM location specified as source is added to the content of the
destination location, the value 128 is subtracted from the result that is stored in the
destination. This operation allows the use of the signed byte considering the values
between 0 and 127 as negative, 128 as 0, and the values between 129 and 255 as
positive.

Flags: Z set if result is zero, cleared otherwise.
C set if overflow, cleared otherwise.
S set if underflow, cleared otherwise.

Bytes: 3

Cycles: 20

Example: If the RAM location 20 contains the value 100 and the RAM location 11 contains the
value 40, then the instruction

addo 20, 11 00100001 00010100 00001011

causes the location 20 of the RAM to be loaded with the value 12.

If the location 20 contains the value 100 and the location 11 contains the value 10,
the instruction causes the location 20 to be loaded with the value 238 (256+result)
and the S flag to be set. If the location 20 contains the value 200 and the location 11
contains the value 228, the instruction causes the location 20 to be loaded with the
value 44 (result-256) and the C flag to be set.

68/120

ST52T420/E420

AND
Logical AND

Format: and dst, src

Operation: dst⇐ dst AND src

Description: The instruction logically ANDs the content of the RAM locations specified as source
and as destination, leaving the result in the destination.

Flags: Z set if result is zero, cleared otherwise.
C not affected
S not affected

Bytes: 3
Cycles: 17

Example: If the RAM location 20 contains the value 240 (11110000b) and the RAM location
11contains the value 85 (01010101b), then the instruction

and 20, 11 00100010 00010100 00001011

causes the location 20 of the RAM to be loaded with the value 80 (01010000b).

69/120

ST52T420/E420

ASL
Arithmetic Shift Left

Format: asl dst

Operation: C ⇐ dst (7)

dst (0) ⇐ 0

dst (n+1) ⇐ dst(n) where n = 0-6

Description: The instruction shifts one bit left the content of the RAM location specified as
destination. The most significative bit is placed in the C flag and the less significative
bit is loaded with 0.

Flags: Z set if result is zero, cleared otherwise.
C set if MSB was set, cleared otherwise.

S not affected.

Bytes: 2

Cycles: 15

Example: if the RAM location 20 contains the value 85 (01010101b), then the instruction:

asl 20 00101001 00010100

causes the location 20 of the RAM to be loaded with the value 170 (10101010b).
If the RAM location 20 contains the value 150 (10010110b), then the instruction causes
the location 20 of the RAM to be loaded with the value 44 (00101100b) and the C flag
to be set.

70/120

ST52T420/E420

ASR
Arithmetic Shift Right

Format: asr dst

Operation: S ⇐ dst (0)

dst (7) ⇐ 0
dst (n) ⇐ dst (n+1) where n = 0-6

Description: The instruction shifts one bit right the content of the RAM location specified as
destination. The less significative bit is placed in the S flag and the most significative
bit is loaded with 0.

Flags: Z set if result is zero, cleared otherwise.
C not affected.
S set if LSB was set, cleared otherwise.

Bytes: 2
Cycles: 15

Example: If the RAM location 20 contains the value 170 (10101010b), then the instruction:

asr 20 00101010 00010100

causes the location 20 of the RAM to be loaded with the value 85 (01010101b).

If the RAM location 20 contains the value 85 (01010101b), then the instruction causes
the location 20 of the RAM to be loaded with the value 42 (00101010b) and the S flag
to be set.

71/120

ST52T420/E420

CALL
Subroutine Call

Format: call label

Operation: SP⇐ SP -2 (SP = Stack Pointer)

(SP) ⇐ PC (PC = Program Counter)

PC label

Description: The content of the Program Counter (PC) is pushed to the top of the System Stack
and the location address specified by the symbol label is loaded into the PC in order
to point to the first instruction of the subroutine.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 3

Cycles: 18

Example: If the label ‘‘subx’’, that indicates the first location of a subroutine, is located to the
address 2500 (00001001 11000100), then the instruction:

call subx 01000111 00001001 11000100

causes the PC to be loaded with the value 2500 and the program to jump to the
subroutine labelled ‘‘subx’’.

72/120

ST52T420/E420

DEC
Decrement

Format: dec dst

Operation: dst ⇐ dst - 1

Description: The content of the specified RAM location is decremented by 1.

Flags: Z set if result is zero, cleared otherwise.

C not affected.

S set if underflow, cleared otherwise.

Bytes: 2

Cycles: 15

Example: If the RAM location 20 contains the value 50, then the instruction:

dec 20 00101100 00010100

causes the location 20 of the RAM to be loaded with the value 49.

If the RAM location 20 contains the value 0, then the instruction causes the location
20 to be loaded with the value 255 and the S flag to be set.

73/120

ST52T420/E420

DIV
Division (16/8)

Format: div dst, src

Operation: [dst dst+1] / src :

dst ⇐ remainder

dst + 1 ⇐ result

Description: The content of the destination RAM location pair (the 16 bit dividend is composed by
the dst (MSB) and dst+1 (LSB) locations) is divided by the source. The LSB of the
destination location pair (dst+1) is loaded with the result, the MSB (dst) is loaded with
the remainder. In case of overflow the MSB and the LSB are loaded both with 255.

Flags: Z set if result is zero, cleared otherwise.
C set if overflow, cleared otherwise.
S set if remainder is zero, cleared otherwise.

Bytes: 3

Cycles: 26

Example: If the RAM location pair 20 and 21 contains the value 1523 and the location 40 contains
the value 30, then the instruction:

div 20, 40 00100011 00010100 00101000

causes the location 21 of the RAM to be loaded with the value 50 and the location 20
with the value 23.

74/120

ST52T420/E420

FUZZY
Fuzzy Computation

Format: fuzzy

Operation: Start fuzzy output computation

Description: This instruction transfers the control to the Fuzzy Computation Unit for the evaluation
of a single fuzzy output. After this instruction, only fuzzy instructions can be inserted
until the instruction OUT is specified. If more fuzzy output have to be computed, the
instruction FUZZY should be specified again after the instruction OUT.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 1

Cycles: 5

Example: The following instruction:

fuzzy 10000000

starts a fuzzy computation section.

75/120

ST52T420/E420

HALT
Halt

Format: halt

Operation: Clock Master halted.

Description: This instruction stops the clock master so that the CPU and the peripherals are
turned-off. It is possible to exit from the halt mode by means of an external interrupt
or a chip reset.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7 - 16

Example: After the instruction:

halt 00110111

the device is put in halt mode and the program is stopped until an external interrupt
or a chip resets.

76/120

ST52T420/E420

INC
Increment

Format: inc dst

Operation: dst ⇐ dst + 1

Description: The content of the specified RAM location is incremented by 1.

Flags: Z set if result is zero, cleared otherwise.
C set if overflow, cleared otherwise.
S not affected.

Bytes: 2
Cycles: 15

Example: If the RAM location 20 contains the value 50, then the instruction:
inc 20 00101101 00010100

causes the location 20 of the RAM to be loaded with the value 51.

If the RAM location 20 contains the value 255, then the instruction causes the location
20 to be loaded with the value 0 and the C and Z flags to be set.

77/120

ST52T420/E420

JP
Unconditional Jump

Format: jp label

Operation: PC ⇐ label (PC = Program Counter)

Description: This instruction causes the address value specified by the symbol ‘‘label’’ to be loaded
into the Program Counter (PC) and the Program jumps to the instruction located at
the address labelled with ‘‘label’’.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 3

Cycles: 12

Example: If the Program Memory location 2500 (00001001b 11000100b) is labelled with
‘‘labelx’’, then the instruction:

jp labelx 01000000 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that location.

78/120

ST52T420/E420

JPC
Jump if C Flag Set

Format: jpc label

Operation: if C=1, PC ⇐ label (PC = Program Counter)

Description: If C flag is set, this instruction causes the address value specified by the symbol ‘‘label’’
to be loaded into the Program Counter (PC) and the Program jumps to the instruction
located at the address labelled with ‘‘label’’. Otherwise the control passes to the next
instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 12 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labelled with
‘‘labelx’’, and the C flag is set then the instruction:

jpc labelx 01000101 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that location.

79/120

ST52T420/E420

JPNC
Jump if C Flag Not Set

Format: jpnc label

Operation: if C=0, PC ⇐ label (PC = Program Counter)

Description: If C flag is not set, this instruction causes the address value specified by the symbol
‘‘label’’ to be loaded into the Program Counter (PC) and the Program jumps to the
instruction located at the address labelled with ‘‘label’’. Otherwise the control passes
to the next instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 12 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labelled with
‘‘labelx’’, and the C flag is not set then the instruction:

jpnc labelx 01000110 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that location.

80/120

ST52T420/E420

JPNS
Jump if S Flag Not Set

Format: jpns label

Operation: if S=0, PC⇐ label (PC = Program Counter)

Description: If S flag is not set, this instruction causes the address value specified by the symbol
‘‘label’’ to be loaded into the Program Counter (PC) and the Program jumps to the
instruction located at the address labelled with ‘‘label’’. Otherwise the control passes
to the next instruction.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 3

Cycles: 12 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labelled with
‘‘labelx’’, and the S flag is not set then the instruction:

jpns labelx 01000010 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that location.

81/120

ST52T420/E420

JPNZ
Jump if Z Flag Not Set

Format: jpnz label

Operation: if Z=0, PC ⇐ label (PC = Program Counter)

Description: If Z flag is not set, this instruction causes the address value specified by the symbol
‘‘label’’ to be loaded into the Program Counter (PC) and the Program jumps to the
instruction located at the address labelled with ‘‘label’’. Otherwise the control passes
to the next instruction.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 3

Cycles: 12 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labelled with
‘‘labelx’’, and the Z flag is not set then the instruction:

jpnz labelx 01000100 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that location.

82/120

ST52T420/E420

JPS
Jump if S Flag Set

Format: jps label

Operation: if S=1, PC ⇐ label (PC = Program Counter)

Description: If S flag is set, this instruction causes the address value specified by the symbol ‘‘label’’
to be loaded into the Program Counter (PC) and the Program jumps to the instruction
located at the address labelled with ‘‘label’’. Otherwise the control passes to the next
instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 12 if jump, 10 otherwise

Example: If the Program Memory location 2500 (000
01001b 11000100b) is labelled with ‘‘labelx’’, and the S flag is set then the instruction:

jps labelx 01000001 00001001 1000100

loads the value 2500 into the PC and transfers the program control to that location.

83/120

ST52T420/E420

JPZ
Jump if Z Flag Set

Format: jpz label

Operation: if Z=1, PC ⇐ label (PC = Program Counter)

Description: If Z flag is set, this instruction causes the address value specified by the symbol ‘‘label’’
to be loaded into the Program Counter (PC) and the Program jumps to the instruction
located at the address labelled with ‘‘label’’. Otherwise the control passes to the next
instruction.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 3

Cycles: 12 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labelled with
‘‘labelx’’, and the Z flag is set then the instruction:

jpz labelx 01000011 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that location.

84/120

ST52T420/E420

LDCE
Load Configuration, EPROM

Format: ldce dst, src

Operation: dst ⇐ src

 Description: The instruction loads into the configuration register specified as destination the
data contained in the Program Memory source location in the current page, speci-
fied with the PGSET instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 17

Example: if the Program Memory location 300 contains the value 240 and the current page is
set to 1 (256+44=300), then the instruction:

ldce 12, 44 00011011 00001100 00101100

causes the configuration register 12 to be loaded with the value 240.

85/120

ST52T420/E420

LDCR
Load Configuration, RAM

Format ldcr dst, src

Operation: dst ⇐ src

Description: The instruction loads into the configuration register specified as destination the data
contained in the RAM location specified as source.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 3

Cycles: 14

Example: If the RAM location 80 contains the value 64 then the instruction

ldcr 12, 80 00010100 00001100 01010000

causes the configuration register 12 to be loaded with the value 64.

86/120

ST52T420/E420

LDFR
Load Fuzzy, RAM

Format: ldfr dst, src

Operation: dst ⇐ src

Description: The instruction loads into Fuzzy input registers (0 to 7) specified as destination the
data contained in the RAM location specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: If the RAM location 80 contains the value 64 then the instruction

ldfr 2, 80 00011000 00000010 01010000

causes the fuzzy input register 2 to be loaded with the value 64, that is used as crisp
input value of the third fuzzy variable.

87/120

ST52T420/E420

LDPE
Load Peripheral, EPROM Indirect

Format: ldpe dst, (src)

Operation: dst ⇐ (src)

Description: The instruction loads into the Output Peripheral Register specified as destination the
data contained in the EPROM location which address (in the page set with the PGSET
instruction) is contained in the RAM location specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3

Cycles: 17

Example: If the currently EPROM page set is 2, the RAM location 30 contains the value 10 and
the EPROM location 522 (256*2+10) contains the value 100, then the instruction:

ldpe 2, (30) 00010110 00000010 00011110

causes the Output Peripheral Register 2 to be loaded with the value 100.

88/120

ST52T420/E420

LDPR
Load Peripheral, RAM

Format: ldpr dst, src

Operation: dst ⇐ src

Description: The instruction loads into the Output Peripheral Register specified as destination the
data contained in the RAM location specified as source.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 3

Cycles: 14

Example: If the RAM location 30 contains the value 100, then the instruction:

ldpr 2, 30 00010101 00000010 00011110

causes the Output Peripheral Register 2 to be loaded with the value 100.

89/120

ST52T420/E420

LDRC
Load RAM, Constant

Format: ldrc dst, const

Operation: dst ⇐ const

Description: The instruction loads into the RAM location specified as destination the constant
specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: The following instruction:

ldrc 24, 130 00010000 00011000 10000010

causes the RAM location 24 to be loaded with the value 130.

90/120

ST52T420/E420

LDRE
Load RAM, EPROM

Format: ldre dst, src

Operation: dst ⇐ src

Description: The instruction loads into the RAM location specified as destination the contents of
the EPROM location specified as source (in the page set with the PGSET instruction).

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 16

Example: If the currently set EPROM page is 2 and the address 522 (256*2+10) contains the
value 100, then the following instruction:

ldre 24, 10 00010001 00011000 00001010

causes the RAM location 24 to be loaded with the value 100.

91/120

ST52T420/E420

(LDRE)
Load RAM Indirect, EPROM Indirect

Format: ldre (dst), (src)

Operation: (dst) ⇐ (src)

Description: The instruction loads into the RAM location, which address is contained in the RAM
location specified as destination, the contents of the EPROM location, which address
is contained in the RAM location specified as source (both in the page set with the
PGSET instruction).

Flags: Z not affected.
C not affected.

S not affected.

Bytes: 3

Cycles: 18

Example: If the currently set EPROM page is 2, the RAM location 20 contains the value 10, the
address 522 (256*2+10) contains the value 100 and the RAM location 24 contains the
value 50, then the following instruction:

ldre (24), (20) 00010010 00011000 00001010

causes the RAM location 50 to be loaded with the value 100.

92/120

ST52T420/E420

LDRI
Load RAM, Peripheral Input

Format: ldri dst, src

Operation: dst ⇐ src

Description: The instruction loads into the RAM location specified as destination the contents of
the Input Peripheral Register specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3

Cycles: 15

Example: If the Input Peripheral Register 10 contains the value 100, then the following instruc-
tion:

ldri 24, 10 0010011 00011000 00001010

causes the RAM location 24 to be loaded with the value 100.

93/120

ST52T420/E420

LDRR
Load RAM, RAM

Format: ldrr dst, src

Operation: dst ⇐ src

Description: The instruction loads into the RAM location specified as destination the contents of
RAM location specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 16

Example: if the RAM location 10 contains the value 100, then the following instruction:

ldrr 24, 10 00010111 00011000 00001010

causes the RAM location 24 to be loaded with the value 100.

94/120

ST52T420/E420

MDGI
Macro Disable Global Interrupts

Format: mdgi

Operation: all interrupts disabled

Description: This instruction is used by the FUZZYSTUDIO Compiler in order to disable the inter-
rupts at the beginning of a Compiler Macro.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1

Cycles: 7 if GI already disabled, 16 otherwise

Example: After the instruction:

mdgi 00110100

interrupts cannot be serviced until the Global Interrupt Mask (GI) is again enabled
with a MEGI instruction.

95/120

ST52T420/E420

MEGI
Macro Enable Global Interrupts

Format: megi

Operation: not masked interrupts enabled

Description: This instruction is used by the FUZZYSTUDIO Compiler in order to enable not masked
interrupts after the end of a Compiler Macro. Interrupts cannot be enabled if a UDGI
instruction, not followed by a UEGI instruction, has been specified.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 1

Cycles: 7 if GI already enabled, 16 otherwise

Example: If a UDGI instruction, not followed by a UEGI instruction, has not been specified, after
the instruction:

megi 00110101

not masked interrupts are enabled.

96/120

ST52T420/E420

MIRROR
Byte Mirror

Format: mirror dst

Operation: dst(n) ⇐ dst(7-n)

Description: This instruction modifies the content of the specified RAM location, inverting the order
of the bits.

Flags: Z set if result is zero, cleared otherwise.

C not affected.

S not affected.

Bytes: 2

Cycles: 15

Example: If the RAM location 24 contains the value 142 (10001110b), after the instruction:

mirror 24 00101011 00011000

the RAM locations will contain the value 113 (01110001b).

97/120

ST52T420/E420

MULT
Multiplication (8 X 8)

Format: mult dst, src

Operation: [dst dst+1] ⇐ dst * src

Description: The instruction computes the product between the values contained in the RAM
locations specified as destination and as source. The result is a 16 bit number which
the most significative byte is stored in the destination location and the least significative
is stored in the location after the destination.

Flags: Z set if result is zero, cleared otherwise.
C not affected.
S not affected.

Bytes: 3
Cycles: 19

Example: If the RAM location 20 contains the value 100 and the location 40 contains the value
30, then the instruction:

mult 20, 40 00100100 00010100 00101000

causes the location 20 of the RAM to be loaded with the value 11 (MSB) and the
location 21 with the value 184 (256*11+184=30*100=3000).

98/120

ST52T420/E420

NOP
No Operation

Format: nop

Operation: No operation.

Description: No operation is carried out with this instruction. It is typically used for timing delay.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 1

Cycles: 6

Example: The instruction:

nop 10000001

causes the program control to pass to the next instruction after 6 clock cycles.

99/120

ST52T420/E420

NOT
Logical NOT

Format: not dst

Operation: dst ⇐ 255-dst

Description: This instruction negates each bit of the location specified as destination.

Flags: Z set if result is zero, cleared otherwise.
C not affected.
S not affected.

Bytes: 2
Cycles: 15

Example: If the location 24 contains the value 100 (01100100b), the instruction:

not 24 00100101 00011000

causes the location 24 to be loaded with the value 155 (10011011b).

100/120

ST52T420/E420

OR
Logical OR

Format: or dst, src

Operation: dst ⇐ dst OR src

Description: The instruction logically ORs the content of the RAM locations specified as source and
as destination, leaving the result in the destination.

Flags: Z set if result is zero, cleared otherwise.

C not affected.

S not affected.

Bytes: 3

Cycles: 17

Example: If the location 24 contains the value 100 (01100100b), and the location 10 contains
the value 15 (00001111b), then the instruction:

or 24, 10 00100110 00011000 00001010

causes the location 24 to be loaded with the value 111 (01101111b).

101/120

ST52T420/E420

PGSET
Page Set

Format: pgset const

Operation: Page pointer setting.

Description: This instruction sets the current EPROM page to the const page, so that the locations
that can be addressed are in the range [256*const , 256*cost+255]
WARNING: the page pointer is modified by the jump instructions (JP, CALL, JPC, etc.)
so the PGSET instruction should be specified again before accessing an EPROM
location if a jump instruction have been used after the last PGSET.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 9

Example: The instruction:

pgset 4 00011001 00000100

sets the current page to the fifth page (addresses 1024-1279).

102/120

ST52T420/E420

RET
Return from Subroutine

Format: ret

Operation: PC ⇐ (SP) (PC = Program Counter)

SP ⇐ SP+ 2 (SP = Stack Pointer)

Description: This instruction performs the return from a subroutine. It determines the jump of the
program to the line after the subroutine call instruction.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 1

Cycles: 12

Example: If the value to the top of the stack is 0e4h, the instruction:

ret 01001000

determines the PC to be loaded with the value 0e4h and the previous value to be lost.

103/120

ST52T420/E420

RETI
Return from Interrupt

Format: reti

Operation: PC ⇐ (SP) (PC = Program Counter)

SP ⇐ SP + 2 (SP = Stack Pointer)

flag ⇐ saved flags

Description: This instruction performs the return from a interrupt service routine. It determines the
return of the device to the state it was before the interrupt. The value of the PC is
popped from the top of the stack, together with the saved flags.

Flags: Z restored to stack value.

C restored to stack value.

S restored to stack value.

Bytes: 1

Cycles: 12

Example: If the value to the top of the stack is 0e4h, the instruction:

reti 00110000

determinates the PC to be loaded with the value 0e4h, the previous value to be lost
and the flags status before the interrupt to be restored.

104/120

ST52T420/E420

RINT
Reset Interrupt

Format: rint const

Operation: Interrupt No. const Pending bit ⇐ 0

Description: This instruction resets the pending bit of the interrupt No.const. After this instruction
the request of interrupt is cancelled and will not be acknowledged

Flags: z not affected.

C not affected.

S not affected.

Bytes: 1

Cycles: 8

Example: If the interrupt 3 source (TIMER2) has generated an interrupt request remaining
pending (being the interrupt masked or globally disabled), after the instruction

rint 3 00110001 00000011

the TIMER2 interrupt request is cancelled and will be serviced when enabled only if
a successive request is sent.

105/120

ST52T420/E420

SUB
Subtraction

Format: sub dst, src

Operation: dst ⇐ dst - src

Description: The content of the RAM location specified as source is subtracted to the contents of
destination location, leaving the result in the destination.

Flags: Z set if result is zero, cleared otherwise.
C not affected.
S sets if underflow, cleared otherwise.

Bytes: 3

Cycles: 17

Example: if the RAM location 20 contains the value 45 and the RAM location 11 contains the
value 15, then the instruction

sub 20, 11 00100111 00010100 00001011

causes the location 20 of the RAM to be loaded with the value 30.

If the location 20 contains the value 80 and the location 11 contains the value 100, the
instruction causes the location 20 to be loaded with the value 236 (256 + result) and
the S flag to be set.

106/120

ST52T420/E420

SUBO
Subtraction with Offset

Format: subo dst, src

Operation: dst ⇐ dst + 128 - src

Description: The value 128 is added to the content of the RAM location specified as destination,
then the content of source location is subtracted to the result and stored into the
destination location. This operation allows the use of the signed byte considering the
values between 0 and 127 as negative, 128 as 0, and the values between 129 and
255 as positive.

Flags: Z set if result is zero, cleared otherwise.

C set if overflow, cleared otherwise.

S set if underflow, cleared otherwise.

Bytes: 3

Cycles: 20

Example: if the RAM location 20 contains the value 45 and the RAM location 11 contains the
value 65, then the instruction

subo 20, 11 00101000 00010100 00001011

causes the location 20 of the RAM to be loaded with the value 108.

If the location 20 contains the value 200 and the location 11 contains the value 20, the
instruction causes the location 20 to be loaded with the value 52 (result-256) and the
C flag to be set.If the location 20 contains the value 20 and the location 11 contains
the value 200, the instruction causes the location 20 to be loaded with the value 204
(256+result) and the S flag to be set.

107/120

ST52T420/E420

UDGI
User Disable Global Interrupts

Format: udgi

Operation: all interrupts disabled

Description: This instruction can be used by the User in order to disable globally the interrupts.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 1

Cycles: 7 if GI already disabled, 16 otherwise

Example: After the instruction:

udgi 00110010

interrupts cannot be serviced until the Global Interrupt Mask (GI) is again enabled with
a UEGI instruction.

108/120

ST52T420/E420

UEGI
User Enable Global Interrupts

Format: uegi

Operation: not masked interrupts enabled

Description: This instruction can be used by the Compiler in order to enable not masked interrupts.
Interrupts cannot be enabled if a MDGI instruction, not followed by a MEGI instruction,
has been specified.

Flags: Z not affected.

C not affected.

S not affected.

Bytes:
1

Cycles: 7 if GI already enabled, 16 otherwise

Example: If a MDGI instruction, not followed by a MEGI instruction, has not been specified, after
the instruction:

uegi 00110011

not masked interrupts are enabled.

109/120

ST52T420/E420

WAITI
Wait for Interrupt

Format: waiti

Operation: wait for interrupt

Description: This instruction stops the program execution until an interrupt from an active source
is requested. During the wait state some functionalities of the device are turned off in
order to lower the power consumption.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles 7

Example: The instruction:

waiti 00110110

puts the chip in wait mode and stops the program execution, waiting for an interrupt
signal. If there are no active interrupt sources, the device can exit from the wait mode
only with a reset.

110/120

ST52T420/E420

WDTRFR
Watchdog Refresh

Format: wdtrfr

Operation: Watchdog counter enabled or refreshed

Description: If the Watchdog is disabled, this instruction enables the watchdog and the counter
starts to count from the configured value. If the watchdog is already enabled, this
instruction restarts the counting from the beginning.

Flags: Z not affected.

C not affected.

S not affected.

Bytes: 1

Cycles: 7

Example: After the instruction:

wtdrfr 10000010

the Watchdog is enabled and the value of counting stored in the Configuration Register
2 is loaded in the Watchdog counter.

111/120

ST52T420/E420

WDTSLP
Watchdog Sleep

Format: wdtslp

Operation: Watchdog disabled

Description: This instruction disables the Watchdog, avoiding the chip reset.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1

Cycles: 6

Example: After the instruction:

wtdslp 10000011

the Watchdog is disabled stopping the counter .

112/120

ST52T420/E420

ST52x420 Assembler Pseudo Instructions:
The Assembler pseudo instructions have not direct correspondence with the machine code; this is obtained
after the elaboration of the supplied data by means of the Assembler.

The Assembler pseudo instructions are used to set the data for the Fuzzy Computation, the Assembler
then optimizes these data considering the code format used from the Fuzzy Computation Unit.

There are also the pseudo instructions to set data and to set the current location in EPROM Memory.

CON
Consequent

Format: con const

Operation: Dividend Register ⇐ Dividend register + Teta * const

Divisor Register ⇐ Divisor Register + Teta

Description: This instruction computes the values to add in the defuzzyfication registers, at the
end of the single rule. The specified constant is the crisp value representing the out-
put crisp membership function: it is multiplied by the last fuzzy operation result.

DATA
EPROM Data

Format: data page, addr, value

Operation: none

Description: This pseudo instruction indicates to the Assembler to store data in the EPROM.
The location in the address of the specified page is loaded with the specified value.

113/120

ST52T420/E420

IRQ
Interrupt Request Vector

Format: irq int, label

Operation: none

Description: This pseudo-instruction indicates the interrupt vectors to the Assembler.
The argument represents respectively the interrupt and the relative interrupt service
routine first address, pointed with a label.

FZAND
Fuzzy AND

Format: fzand

Operation: K ⇐ MIN(stack(0) , stack(1))

Description: This instruction computes the Fuzzy AND operation (minimum) between the two
values stored in the Fuzzy stack, previously loaded with LDP, LDN or LDK instruc-
tions, and stores the result in the register K.

FZOR
Fuzzy OR

Format: fzor

Operation: K ⇐ MAX(stack(0) , stack(1))

Description: This instruction computes the Fuzzy OR operation (maximum) between the two values
stored in the Fuzzy stack, previously loaded with LDP, LDN or LDK instructions, and
stores the result in the register K.

114/120

ST52T420/E420

LDK
Load Stack with K Register

Format: ldk

Operation: stack(0) ⇐ K

Description: The instruction loads in the Fuzzy stack the value temporarily stored in the Fuzzy
register K that is the result of the last Fuzzy operation.

LDM
Load Stack with M Register

Format: ldm

Operation: stack(0) ⇐ M

Description: The instruction loads in the Fuzzy stack the value temporarily stored in the Fuzzy
register M with a previous SKM operation.

LDN
Load Negative Alpha Value

Format: ldn var, mbf

Operation: stack ⇐ 15 - computed alpha value related to mbf M.F. of var Variable

Description: The instruction performs the fuzzyfication and loads in the stack the negated alpha
value of the mbf M.F. of the var Variable.

115/120

ST52T420/E420

LDP
Load Positive Alpha Value

Format: ldp var, mbf

Operation: stack ⇐ computed alpha value related to mbf M.F. of var Variable

Description: The instruction performs the fuzzyfication and loads in the stack the alpha value of the
mbf M.F. of the var Variable.

MBF
Membership Function

Format: mbf num, lvd, vtx, rvd

Operation: none

Description: This pseudo instruction indicates to the Assembler to store a Membership Function
data in the EPROM Memory. The M.F. number is specified as first argument, followed
by the left semibase width, the vertex position and the right semibase width. The first
(of three) EPROM location where the data are stored is the current program line.

OUT
Fuzzy Output

Format: out dst

Operation: dst ⇐ current fuzzy output defuzzyfication result.

Description: This instruction performs the defuzzyfication for the computation of the current fuzzy
output and store the result in the destination RAM location.

116/120

ST52T420/E420

SETMEM
Set Memory

Format: setmem page, addr

Operation: none

Description: This pseudo-instruction indicates that the next current program line must be the one
in the specified address of the specified page.

SKM
Store K Register in M Register

Format: skm

Operation: M ⇐ K

Description: This instruction loads the result of the last performed Fuzzy operation (stored in the
temporary register K) in the temporary buffer M.

117/120

ST52T420/E420

DIM
mm inch.

MIN TYP MAX MIN TYP MAX

A 2.65 0.104

a1 0.1 0.3 0.004 0.012

b 0.35 0.49 0.014 0.019

b1 0.23 0.32 0.009 0.013

C 0.5 0.020

c1 45o (typ.)

D 17.7 18.1 0.697 0.713

E 10 10.65 0.394 0.419

e 1.27 0.050

e3 16.51 0.65

F 7.4 7.6 0.291 0.299

L 0.4 1.27 0.016 0.050

S 8o (max)

PSO28 PACKAGE MECHANICAL DATA

1 14

1528

D

F

e3

eb

A

L

E
b1a

1

s

C
c1

118/120

ST52T420/E420

DIM
mm inch.

MIN TYP MAX MIN TYP MAX

A 5.08 0.200

A1 0.38 0.015

A2 3.56 4.06 0.140 0.160

B 0.38 0.51 0.015 0.020

B1 1.52 0.060

C 0.20 0.30 0.008 0.012

D 36.83 37.34 1.450 1.470

D2 33.02 1.300

E 15.24 0.600

E1 13.59 13.84 0.535 0.545

e1 2.54 0.100

eA 14.99 0.590

eB 15.24 17.78 0.600 0.700

L 3.18 3.43 0.125 0.135

S 1.78 2.08 0.070 0.082

α 0O 10O 0O 100

N 28 28

PLASTIC DIP28 PACKAGE MECHANICAL DATA

1

N

E
1

E

D

S

A
2

A
1

A

D2

B1 B e1

eB

eA

C

119/120

ST52T420/E420

DIM
mm inch

MIN TYP MAX MIN TYP MAX

A 38.10 1.469

B 13.05 13.36 0.514 0.526

C 3.90 5.08 0.153 0.177

D 3.18 0.125

E 0.50 1.78 0.020 0.070

e3 33.02 1.300

F 2.29 2.79 0.90 0.110

G 0.40 0.55 0.18 0.22

I 1.17 1.42 0.48 0.58

L 0.22 0.31 0.010 0.012

M 1.52 2.49 0.060 0.098

N 16.17 18.32 0.637 0.721

N1 4d 15d

P 15.40 15.80 0.606 0.616

Q 5.71 0.225

Diam. 6.86 7.36 0.275 0.285

CERAMIC DIP28 WINDOWED PACKAGE MECHANICAL DATA

e3

C

I
G

F
M

E

D

b

A

B

P

L
N

N1

28

1

Diam.

120/120

ST52T420/E420

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics -- Printed in Italy -- All Rights Reserved

FUZZYSTUDIO® is a registered trademark of STMicroelectronics

DuaLogic is a trademark of STMicroelectronics
MS-DOS®, Microsoft® and Microsoft Windows® are registered trademarks of Microsoft Corporation.

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta

 - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

PART NUMBER MEMORY SIZE TEMPERATURE
RANGE

PACKAGE

ST52T420G0M6 1 kb -25 to +85°C

PSO28ST52T420G1M6 2 kb -25 to +85°C

ST52T420G2M6
ST52T420B/M 4 kb -25 to +85°C

ST52E420B/D 4 kb -25 to +85°C CDIP28W

ST52T420G0B6 1 kb -25 to +85°C

PDIP28ST52T420G1B6 2 kb -25 to +85°C

ST52T420G2B6
ST52T420B/B 4 kb -25 to +85°C

ST52x420/KIT DEVELOPMENT KIT

ORDERING INFORMATION

ST52T420/E420

