
FUZZYSTUDIOTM4.1

USER MANUAL

NOVEMBER 2000

FUZZYSTUDIO™ 4.1

2

OWNERSHIP

STMicroelectronics is the sole owner of the Software contained in the package.

STMicroelectronics is the holder of the copyright to the Software, including without limitation such
aspects of the Software as its code, sequence, organization, “look and feel”, programming language
and compilation names. Use of the Software unless pursuant to the terms of a licence granted by
STMicroeletrconics or as otherwise by law is an infringement of the copyright.

PERMITTED USE

Provided that you fully accept the present conditions, STMicroelectronics grants you a
non-exclusive non transferable licence to use the Product.

You are also authorized to:

A) install the Software on an on-line storage device (for example a hard disk drive);

B) maintain an archivial copy of the Software on off-line storage media (such as diskettes)

PROHIBITED USE

All uses of the Software and other elements of the Product not specifically allowed in the Permitted
uses section of this agreement are prohibited. The following is a partial list of prohibited uses of the
Package. You are not allowed to:

A) decompile or reverse engineer the Software;

B) modify the Software in any manner;

C) sublicence, sell, lend, lease or rent the Software or any portion of the Software.

WARRANTIES

STMicroelectronics makes no warranties, express or implied, including without limitation any war-
ranties of merchantability or fitness for a particular purpose, regarding the Software Development
Tool and any related materials or their performance.

LIMITED DAMAGES

STMicroelectronics shall not be liable for any incidental, special consequential or exemplary dam-
ages including, but not limited to loss of anticipated profits or benefits.

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED

STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICE

OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF STMicroelectronics.

As used herein:

1. Life support devices or systems are those which (a) are intended for surgical implant into the body, or (b) support or sustain life,
and whose failure to perform, when properly used in accordance with instructions for use provided with the product, can be rea-
sonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can responsably be expected
to cause the failure of the life support device or system, or to affect its safety or effectiveness.

i

Table of Contents
ABOUT THIS MANUAL 1
Manual Contents · 1

BEFORE YOU BEGIN 3
General Conventions · 3

Mouse conventions . 3
Keyboard conventions . 3

1 - WELCOME TO FUZZYSTUDIO™4.1 5
Key Features · 5

INSTALLATION AND CONFIGURATION 7
System Requirements · 7
Installing FUZZYSTUDIO™4 · 7
Starting to Use · 7
User Interface · 7
Choosing Commands · 8

Clicking a toolbar button . 8
Choosing commands from menus . 8

Using Help· 9
Context-Sensitive Help . 9

Available Documents · 9

2 - FUZZYSTUDIO™ 4.1 OVERVIEW 11
Programming Approach · 13

3 - PROJECT MANAGEMENT 15
The FUZZYSTUDIO™4.1 Main Window · 15

The FUZZYSTUDIO™4.1 Main Window application menus 15
The FUZZYSTUDIO™4.1 Main Window toolbar 16
The FUZZYSTUDIO™4.1 Main Window status bar 16

Project Files Management · 17
Starting a New Project . 17
Working with an existing Project . 17

Project Window · 18
Main Program . 19
Interrupts . 19
Peripherals . 19
Procedures . 20
Variables. 20
Tables . 20

FUZZYSTUDIO™ 4.1

ii

4 - INITIAL SETTINGS 21
Variables Window · 21

Filter dialog-box . 23
Tables Window · 24
Peripherals Configuration · 27

5 - BLOCKS EDITOR 29
Blocks Editor Window · 29

Blocks Editor menus. 30
Blocks Editor window toolbar . 30
Blocks Editor window status bar . 30

FUZZYSTUDIO™4.1 Blocks · 31
Block Diagram Starting Point · 32
Labels · 32
Working with Blocks · 33

Inserting blocks . 33
Linking blocks . 33
Disconnect blocks and links . 34
Single and multiple selection of blocks . 34
Deleting blocks and links . 34
Opening and closing blocks . 35
Copying blocks . 35
Other commands . 36

6 - FUZZY BLOCK 37
Fuzzy System Editor · 38

Fuzzy System Editor menus. 38
Fuzzy System Editor window toolbar . 38
Fuzzy System Editor window status bar . 38

Fuzzy System Editor · 39
Fuzzy Variables Initialization and Storage · 39
Shared Variables · 40
Variables and Membership Functions Editor· 41

Variables Editor menus . 41
Variables Editor window toolbar . 42
Variables Editor window status bar . 42

Fuzzy Variables Properties· 43
Creating a New Membership Function· 44

Auto Fill tool . 45
Autoshift and Semibase parameter . 46
Modifying the Membership Functions shapes 47
MBF Report tool . 48
Membership Functions Editor Options . 49

Rules Editor · 51
Rules Editor menus . 52
Rules Editor window toolbar . 52
Rules Editor window status bar . 52

iii

Guided Rules Editor · 53
Manual Rules Editor · 54

Rules List updating . 55
Rules Editor Constraints. 55

Rules Grammar · 56
Rules Editor Error Messages · 57
Importing Fuzzy Systems · 58

7 - ARITHMETIC BLOCK 59
Arithmetic Block Editor Window · 59

Arithmetic Block Editor menus. 60
Arithmetic Block Editor window status bar 60

Arithmetic Block Editor · 60
Arithmetic Block Instructions · 61
Global Variables Types and Cast · 62

Mathematical instructions . 63
Logic instructions . 64
Control Structures . 64
Logical functions for conditional expressions 66
Functions for Peripherals and Interrupts Management 66
Functions for bit manipulation . 67

Tables and Constants · 68

8 - ASSEMBLER BLOCK 69
Assembler Block Editor Window · 69
Assembler Block Editor menus · 70

Assembler Block Editor window status bar 70
Assembler Block Editor . 70

Assembler Block Instructions · 71

9 - CONDITIONAL BLOCK 75
Conditional Block Editor · 75
Conditional Block Grammar · 76

10 - BLOCKS FOR PERIPHERALS MANAGEMENT 77
Send and Receive Block · 77

Send Block . 77
Receive Block · 78
Peripherals Blocks · 79

11 - INTERRUPTS RELATED BLOCKS 81
Interrupts Enable Block · 81
Interrupts Disable Block · 82
Interrupts Reset Block · 82
Interrupts Mask Block · 83
Interrupts Priority Block · 84

FUZZYSTUDIO™ 4.1

iv

12 - OTHER BLOCKS 85
Call Block · 85
Wait and Halt Blocks · 86
Restart and Return Blocks · 87
IRQ and RETI Blocks · 87
Folder Block and Exit Block · 88
Folders with Compiler options · 89

13 - COMPILER 91
Project Compilation · 91

Files generated during compilation . 92
Compiler Options . 93

Compiler Error Messages · 93
Compilation errors . 93

Compilation Warnings · 100

14 - DEBUGGER 103
Debugger Window · 104

Debugger menus . 104
Debugger window toolbar . 105
Blocks Editor window Status Bar . 105

Opening and Closing the Debugger · 105
Debugger Working Modes · 106

Step Mode . 106
Run Mode . 106
Time Run Mode . 106

Animate Mode · 107
FSCODE Window · 107
ASM Window · 108
Watch Editor · 109

Expressions syntax. 110
Breakpoints · 111
Exceptions · 113
Stimulus Editor · 114

Generic structure of a Stimulus File . 115
Digital signals description . 115
Analog signals description . 116
Grouping signals in buses . 116
Periodic signals. 118
Random signals . 120
Thresholds declaration . 120
Comments . 120

Stimulus Editor Error Messages · 121
Simulation Plot · 125

Plot window . 125
Plot window toolbar . 126
Plot window status bar . 126
Selecting plot items . 126

v

Zooming simulation . 127
Cursors. 128
Go To. 128
Customizing the Plot window. 128
Plot Print Options . 129

Variables Dump window · 130
Status Window · 131
Block Trace Window · 132
Memory Dump · 132

Options . 133

15 - DEVICE PROGRAMMING 135
Device Programming · 135

Device programming status messages . 135
Device programming error messages . 137

Programming Options · 138
Download Options settings. 138

Advanced Settings · 139

APPENDIXES

A - FEATURES DEPENDENT ON THE TARGET DEVICE A-3
ST52x420/420Gx Features · 3

Other Predefined Variables . 4
DeviceStatus() Function Parameters · 5
DeviceSet() function parameters · 5
Interrupt Related Functions · 7
Peripherals Configuration Sheets · 8

Chip Clock sheet . 8
Port Pins sheet . 9
Watchdog sheet . 10
PWM-Timer 0 sheet . 11
A/D Converter sheet . 13

Peripherals Setting Blocks · 15
A/D Converter setting block . 15
Watchdog Setting block . 16

Blocks Related to the Interrupts · 18
Memory Spaces · 19

Pin names to be used in the Stimulus file . 20
Debugger Exceptions list · 21
ST52x430Kx Features · 22
DeviceStatus() Function Parameters · 24
DeviceSet() function parameters· 25
Interrupt Related Functions · 27
Peripherals Configuration Sheets · 28

Chip Clock sheet . 28

FUZZYSTUDIO™ 4.1

vi

Port Pins sheet . 29
Watchdog sheet . 30
PWM-Timer 0 sheet . 30
A/D Converter sheet . 33

SCI Sheet · 34
Peripherals Setting Blocks · 36

A/D Converter setting block . 36
Watchdog Setting block . 38

SCI Setting Block · 39
Blocks Related to the Interrupts · 40
Memory Spaces · 41

Pin names to be used in the Stimulus file . 42
Debugger Exceptions list · 43

B - PROGRAMMER BOARD B-1
General Description · 1
Software Installation· 2
Hardware Installation · 2
Programming Phase · 2

Device Programming . 3
Hardware Description · 3

C - FSASM ASSEMBLER PROGRAMMING TOOL C-1
Introduction · 1
System Requirements· 1
Installing FSAsm · 2
FSAsm Main Window · 2

FSAsm menus . 2
FSAsm toolbar . 2
FSAsm status bar . 2

Managing and Printing Files· 3
Editing Commands · 3
Target Device Selection · 4
Machine Code Generation · 5
Debugger · 5
Device Programming · 6

Device programming status messages . 7
Device programming error messages . 8

Programming Options · 9
Download Options Settings . 9
Advanced Settings. 10

Assembler Error List · 11

vii

ASSEMBLER LANGUAGE 15
Program Memory and Registers’ Architecture · 15

Program Memory . 15
RAM Memory . 17

Configuration Registers · 18
Input Registers · 18
Output Registers · 18
Flags · 19
Fuzzy Programming in Assembler · 20

Membership Functions definition . 20
Rule Inference · 21

THE STRUCTURE OF A PROGRAM 25
Structure of a Generic Code Line · 25
Comment sequences · 25
Line label · 26
Interrupt Vectors Definition · 26
Program Memory Organization · 26
Data Management · 27
Current Program Address Management · 27

ASSEMBLER INSTRUCTION SET 29

D - FUZZY LOGIC INTRODUCTION D-1
Human Language and Indeterminacy · 1
A General Overview · 2
The Linguistic Approach· 2
Fuzzy Logic, Fuzzy sets and Membership Functions · · · · · · · · · · · · · · · · · · · 4
Fuzzy Reasoning · 5
The Mathematical Definition of Fuzzy Sets · 7
Membership Functions · 9
Fuzzy Set Operators · 9
Set Complement · 10
Set Union · 12
Set Intersection · 13
The Mathematical Formalism of Fuzzy Logic · 14
Fuzzy Reasoning · 16
Fuzzy Computation · 17
Bibliography · 21

E - FULL E-1
Fuzzy Logic Language · 1
FULL Language Elements· 1

White space. 2
Comments . 2
Punctuation . 2
Operators . 2
Keywords . 3

FUZZYSTUDIO™ 4.1

viii

Identifiers . 3
Constants . 4
Expressions . 4
Declarations. 6
Universes . 6
Modifiers . 7
Shapes . 8
Variables. 10
Rules . 12

FULL Program Example · 14
FULL Language Grammar · 16

1

ABOUT THIS MANUAL

This manual is designed to help you to get familiar with FUZZYSTUDIO™4.1 Software De-
velopment Environment for the ST52 family of Fuzzy Microcontrollers.

It provides an overview of the ST52 programming tools included in FUZZYSTUDIO™4.1 en-
vironment and of the additional tools provided with FUZZYSTUDIO™4.1 Kit. It introduces
you in the new “Visual” programming approach used in FUZZYSTUDIO™4.1 to get quick
and smart results in applications development.

You can find the contents of this manual also in the Online help included in
FUZZYSTUDIO™4.1, accessible from the main menu.

Manual Contents

The FUZZYSTUDIO™4.1 Manual is organized as follows:

1: Getting Started
The Getting Started chapter provides you with general information about
FUZZYSTUDIO™4.1 including the key features and what’s new in this release. It also pro-
vides you with a guide to the installation of the program and on the user interface. This chap-
ter also includes reference to available documents and literature.

2: FUZZYSTUDIO™4.1 Overview
This part gives an overview of FUZZYSTUDIO™4.1 and an introduction to the programming
approach for the development of your applications.

3: Project Management
This section provides an overview of the major elements of the FUZZYSTUDIO™4.1 Main
Window, such as menus, toolbar and status bar. The Project Window allows to access any
part of the project and define user program procedures.

4: Initial Settings
This chapter describes how to initialize the device. Variable initialization and peripheral
configuration are described.

5: Blocks Editor
The Blocks Editor is the main tool used in the environment to design the block diagram of the
program parts. In this chapter you will learn the standard editing commands related to
blocks and links.

6: Fuzzy Block
The environment to define a Fuzzy System is described in this chapter. In this chapter you
will learn how to edit the fuzzy system, define fuzzy variables, draw membership functions
and how to write fuzzy rules.

7: Arithmetic Block
The Arithmetic Block allows to carry out the arithmetic and logic instructions of the device. In
this chapter you will learn how to use the Arithmetic Block editor, the instructions set syntax
and how to write the program lines by using ‘C’ code.

8: Assembler Block
The Assembler Block allows to program routines at low level. In this section you will learn
how to use the Assembler Block editor, the instructions set syntax and how to write the pro-
gram lines.

FUZZYSTUDIO™ 4.1

2

9: Conditional Block
The Conditional Block allows to modify the logic flow of the program according to a specified
condition operating on the Global and Predefined Variables. In this chapter you will learn
how to use the Conditional Block editor and how to write the conditions.

10: Blocks for Peripherals Management
In this chapter you will learn how to use the Send, Receive and Peripheral blocks for the
management of peripherals’ operations.

Chapter 11: Interrupts Related Blocks
This section explains how to use the Interrupts related blocks supplied with
FUZZYSTUDIO™4.1 to manage the interrupts.

Chapter 12: Other Blocks
In this chapter you are provided with information on other blocks used for special functions.
They are used to implement some important features of the microcontroller or to improve the
readability of the block diagram.

Chapter 13: Compiler
This chapter describes how to compile the project and get the code to be loaded in the de-
vice.

Chapter 14: Debugger
This chapter describes the use of the Debugger, the tool allowing to test the developed pro-
gram by means of the chip’s simulation.

Chapter 15: Device Programming
In this chapter the device programming procedure and the Programming Board are pointed
out.

Appendix A: Features dependent on the target device
In this appendix the development environment’s features are described taking into account
the differences among the various devices of the ST52 family.

Appendix B: ST52x420 Programmer Board
This appendix supplies the description of the ST52x420 Programmer Board.

Appendix C: FSASM Assembler programming Tool
This part describes the FSAsmtool, supplied with FUZZYSTUDIO™4.1 kit, to program the
de-vice in Assembler language.

Appendix D: Fuzzy Logic Introduction
This part is useful to learn Fuzzy Logic basic concepts.

Appendix E: FULL (FUzzy Logic Language)
This Appendix describes the FULL description language syntax. FULL is used to ex-
port/im-port fuzzy system data among STMicroelectronics proprietary Fuzzy Logic S/W
tools.

3

BEFORE YOU BEGIN

General Conventions

Before you start using FUZZYSTUDIO™4.1 , it is important to understand the terms and no-
tational conventions used in this documentation.

The word “Choose” is used to carry out a menu command or a command button in a dialog
box.

Bold type in text indicates words or characters you type.

Italic type indicates important terms introduced in the section.

UPPER CASE type indicates the names of commands and menus commands of
FUZZYSTUDIO™4.1.

A numbered list (1, 2, ...) indicates a procedure with two or more sequential steps.

A bullet symbol indicates a procedure with only one step.

Mouse conventions
FUZZYSTUDIO™4.1 requires two mouse buttons. The default one is the left button but you
can use the right button to perform some functions. For information on changing the mouse
button, see your operating system documentation.

“POINT” means to position the mouse pointer until the tip of the pointer rests on what you
want to point to on the screen.

“CLICK” means to press and immediately release the mouse button without moving the
mouse.

“DOUBLE CLICK” means to press the mouse button twice in rapid succession.

Keyboard conventions
Aplus sign (+) used between two keys’ names indicates that you must press both keys at the
same time. For example ALT+F means that you press the ALT key and hold it down while
you press the F key; this is the shortcut to choose the File menu.

A comma (,) between two keys’ names indicates that you must press those keys sequen-
tially.

For example, “Press ALT, F, O” means that you press the ALT key and release it, press the F
and release it, and then press the Oand release it. This is the shortcut to choose the File

OPEN command.

FUZZYSTUDIO™ 4.1

4

5

1 - WELCOME TO FUZZYSTUDIO™4.1

FUZZYSTUDIO™4.1 represents the new way to program low-end microcontrollers. In ad-
dition it allows the design of Fuzzy Logic Control Systems. The Windows-based user inter-
face supplies a very simple to understand and easy-to-use environment to quickly develop
applications with all the ST52 family of fuzzy microcontrollers.

Key Features

The FUZZYSTUDIO™4.1 environment is context sensitive according to the selected target
device. The New Project dialog-box, appearing at the beginning, allows to choose one of
the ST52 family microcontrollers from the list of the available ones.

The FUZZYSTUDIO™4.1 Visual approach consists of a simple and intuitive graphical sup-
port, composed by some wizards and editing environments. It is based on Blocks, each rep-
resenting a microcontroller’s function to be programmed. The blocks are interconnected by
means of links in order to establish the block diagram of the program. Each block type has
an associated editor to write the instructions or set the operations to be performed by the
microcontroller. The Blocks Editor is the tool to establish the block diagram and it is used in
most of the parts of the environment.

The whole project is organized in the Project Window as a tree-view, that allows to access to
the whole part of the project. From the tree-nodes it is possible to open the editors for the
device configuration or variables definition and the block editors to establish the program
parts like Main Program, procedures and interrupt routines. Each single block can also be
reached from the Project Window.

The Peripherals Configuration Editor is composed by some dialog-boxes allowing the
specification of the peripherals’ functionality without writing any code line but just clicking
with the mouse on guided options. Taking into consideration that usually, to configure the
peripherals, it is necessary to program each single bit of several registers, keeping continu-
ously the data-sheet beneath the eyes, with the new methodology it is possible not only to
get the configuration faster, but it is also possible to avoid errors programming not admissi-
ble configurations.

FUZZYSTUDIO™4.1 supplies the editors for defining variables and initializing data tables.
The first allows to associate symbolic names to memory locations and define the variable
types. The variable types available in the actual version are Byte, Signed Byte, Word and
Signed Word . According to the variable type, the Compiler translates the instructions in
such a way to manage automatically the different variable types. The second editor allows
to fill data tables with constant values; this can be used inside the program as look-up ta-
bles.

From the Project Window it is possible to define new user procedures. The standard proce-
dures already available are the Main Program and the Interrupt Service Routines. Ac-
cessing to these procedures (both standard and user defined) the associated Blocks Editor
opens, allowing the definition of the program.

FUZZYSTUDIO™ 4.1

6

The Compiler generates the object code files and the machine code to be loaded in the de-
vice target. The first object code generated is expressed in a representation language,
called FSCODE, that reports, in a listing file easy to be analyzed by the programmer, the in-
structions and settings fixed with the Blocks Editors. The FSCODE language syntax is very
close to the ‘C’ language one: some restrictions have been fixed because not all ‘C’
functionalities can be supported by ST52 devices. From the FSCODE list file, the Assem-
bler code is generated and from this, the final machine code is obtained.

The machine code is finally loaded in the device by the Programmer tool that allows to
transfer data through the parallel port of the Personal Computer to the Programming board
supplied with FUZZYSTUDIO™4.1 kit.

Before physical implementation, it is possible to test the program by using the Debugger
tool. This allows to simulate the device in all its parts, peripherals and interrupts included.
Program source can be examined step-by-step, variables and signals can be observed in
text format or plotted in a graphical window working like an oscilloscope.

Another tool is supplied with FUZZYSTUDIO™4.1 kit: FSAsm. It allows to develop pro-
grams for ST52 family in Assembler, to generate the machine code and load the code in the
device.

7

INSTALLATION AND CONFIGURATION

System Requirements

Before you install FUZZYSTUDIO™4, make sure you have all the hardware and software
you need to run the program:

• Intel type 80486 processor or higher.

• 32 MBytes RAM memory, 64 Mbytes are recommended

• Hard Disk with at least 10 MBytes of free space.

• VGA or higher graphics card. 1024x768 resolution is recommended.

• Mouse.

• Windows 95/ 98/ NT.

Installing FUZZYSTUDIO™4

Your first step is to use the Setup program to install FUZZYSTUDIO™4 on your hard disk.
Be sure to start Microsoft Windows before to install FUZZYSTUDIO™4.

1. Insert the Installation Disk 1 into the floppy disk drive A or B.

2. Once Windows is running, select the Run option from the Start menu.

3. On the Run text box, type: A:\SETUP then choose OK or press Enter.

4. Follow the instructions on the screen.

5. You can choose the installation directory, if different from the default one or you can also
choose the program folder where to add the program icons.

7. After copying the necessary files, the setup program automatically generates the Pro-
gram Folder and the icon to start the program.

Starting to Use

After you have installed FUZZYSTUDIO™4, you can use the application.

To start FUZZYSTUDIO™4:

1. Open the FUZZYSTUDIO™4 Program Folder in the Start menu.

2. Click over the FUZZYSTUDIO™4 icon to run the program.

User Interface

This chapter provides basic skills on the use of FUZZYSTUDIO™4 and explains the items you
see on the screen. You can learn how to choose commands and how to use FUZZYSTUDIO™4
Online Help.

The first window that appears on the screen consists of the working area, the Menu Bar, the
Toolbar and the Status Bar.

FUZZYSTUDIO™ 4.1

8

Choosing Commands

A command is an instruction that tells FUZZYSTUDIO™4 to do something. There are differ-
ent ways to choose a command:

• Clicking a Toolbar button with the mouse.

• Choosing a command from a menu.

• Using shortcut keys.

Clicking a toolbar button
The Toolbar consists of a number of icons, each representing a command that you can use
in your project. The Toolbar is a user selectable item, it means that you can choose to hide
or show it by using the related command of the VIEW menu.

Choosing commands from menus
FUZZYSTUDIO™4 commands are grouped in menus. Some commands carry out an action
immediately; others display a dialog box so that you can select options.

• To choose a command with either the mouse or the keyboard, you choose the menu and
then the command name.

• To select a menu or choose a command by using the keyboard, press the key for the under-
lined letter in a menu or number in the command name.

Using the mouse
If you use the mouse you have to follow these steps to choose a command:

• To display a menu that contains the command you want, click the menu name in the menu
bar. Click the command name. You can also point to the menu, drag to the command you
want, and then release the mouse button.

• If the command displays a dialog box, specify the information you need.

• When you finish with the dialog box, click the appropriate button to carry out the command.

Using the keyboard
If you want to choose a command by using the keyboard:

• To activate the menu bar, press ALT or F10. The FILE menu appears selected, indicating
that the menu bar is active.

• To open a menu press the key of the underlined letter of the command name you want to se-
lect or use the left or right arrows keys to select the menu name and the down arrow key to
open it. If the command displays a dialog box, specify the appropriate information that you
need.

• You can change field pressing the TAB key.

• To close a menu, click anywhere outside the menu and the menu bar or press the ESC key.

• To cancel a command, click the CANCEL button on the dialog box or press the ESC key.

• A command name followed by the symbol > on a menu indicates that FUZZYSTUDIO™4
displays a sub-menu.

Using shortcut keys
You can choose some commands by pressing the shortcut keys listed on the menu to the
right of the command. For example, to SAVE the current project, press CTRL+S.

9

Using Help

FUZZYSTUDIO™4 is provided with a complete online reference tool. Help is especially
useful when you need information quickly or when your User Manual is not available. Help
contains information about each command and dialog box.

When you are working with FUZZYSTUDIO™4, you can select HELP using the menu name
on the menu bar or choosing the help button that appears on the dialog box.

Once you are in Help, there are two ways you can move to other topics to find exactly the in-
formation you want, including:

Jump Terms. Jump terms are underlined with a solid line and are used to go to the topics in
the help window.

Back button. The Back button is used to step back through all the topics you have viewed
since opening the HELP window.

Index button. The Index button is used to display the list of Help Topics.

Context-Sensitive Help
To find out about an item on the screen, click the CONTEXT-SENSITIVE HELP button on
the Toolbar.

When the pointer changes to a question mark, choose the command or click the window
item on which you want help.

FUZZYSTUDIO™4 displays the Help topic for the selected command or window item in the
HELP window.

Available Documents

You can find documents that contain answers to many of your technical questions or prob-
lems on the use of ST52 family products from STMicroeletronics Web site at the following
address:

http://www.st.com/stoline/products/support

You can read, print, or download datasheets, application notes, product presentations and
information on other Fuzzy Logic Software products, such as the updated versions of
FUZZYSTUDIO™4 and the patches.

FUZZYSTUDIO™ 4.1

10

11

2 - FUZZYSTUDIO™ 4.1 OVERVIEW

FUZZYSTUDIO™4.1 is the development system that allows to program ST52 family of
fuzzy microcontrollers. This high level tool helps you to:

• Develop applications without Assembler programming

• Verify a developed project with the Debugger tool

• Program the microcontroller through the programming board supplied with
FUZZYSTUDIO™4.1 kit

FUZZYSTUDIO™4.1 provides a Visual programming approach to graphically define the
program’s logic flow by means of interconnected blocks. This can be achieved by de-
signing the block-diagram of your project by inserting the appropriate blocks. Each block
you insert is already designed for a definite type of functionality that can be programmed
either in a graphic way or with high level instructions. The links among the blocks deter-
mine the logic flow of the program. A double-click on the single block opens a program-
ming environment specifically dedicated to the type of block.

FUZZYSTUDIO™4.1 is equipped with tools that allow the machine code generation and
the debugging of the program. It is characterized by the following main functionalities:

• Fuzzy programming

• Arithmetic programming

• Program’s block-diagram definition

• Peripheral configuration and activation

• Programming and activation of Interrupts and associated routines

• Procedures management

• Machine code generation

• Full chip emulation in graphic environment

• Device EPROM memory programming

• Possibility to program at low level using ST52 Assembler.

All the functionalities related to the program development are grouped in the Project
Window, which allows easy access to all the program editors. So we have:

Main Program: to access all the blocks and folders in the main routine.

Interrupts: to access each interrupt routine and the blocks contained in it.

Procedures: to define new user procedures and access to the blocks contained in
them.

Peripherals: to access the peripherals configuration wizards.

Variables: to define the Global Variables name and type.

Tables: to initialize the name and the associated constants and vectors values.

FUZZYSTUDIO™ 4.1

12

The editors are contained in the blocks. FUZZYSTUDIO™4.1 main blocks are:

Icon Block Name Description

Start Block Starting point of the program or procedure

Fuzzy Block Allows to performs the fuzzy functions

Arithmetic Block Carries out arithmetic and logic operations

Assembler Block Allows to insert arithmetic instructions in Assem-
bler

Conditional Block Modif ies the program flow in relat ion to
user-defined conditions

Interrupts Disable Block Disables globally the interrupts

Interrupts Enable Block Enables globally the interrupts

Interrupts Reset Resets all pending interrupts

Interrupts Mask Block Enables selectively interrupts

Interrupts Priority Block Manages interrupts priority

Peripherals Blocks Group of blocks that enables/disables and
sets/resets the peripherals

Send Block Sends the value to a peripheral coming from a
register

Receive Block Receives a value from a peripheral and stores it in
a register

Call Block Calls user-defined procedures

Wait Block Stops the program until the first interrupt signal

Halt Block Puts the device in Halt mode

Restart Block Restarts the program

Return Block Ends the user-defined procedures

IRQ Block Starts an interrupt request service routine

RETI Block Ends an interrupt request service routine

Folder Block Allows to group blocks

Links Connect two different parts of the program

Thanks to these blocks it is possible to realize the desired project by simply drawing the
program block-diagram and fixing each block function.Many of the blocks listed above
have not an associated editor, because they represent an action to be performed.

2 - FUZZYSTUDIO™ 4.1 OVERVIEW

13

Programming Approach

The FUZZYSTUDIO™4.1 Visual programming approach has been designed in order to
help you in the development of a project. These are the main phases that you have to follow:

· Configure the Peripherals and device’s functionalities
The peripherals’ configuration is obtained by means of the property-sheet recalled from
the Project window. You can choose the peripherals’ working mode by clicking on the rel-
ative check-boxes. The configurations that are not allowed are automatically disabled
and in case you do not carry out a choice, default selections are available. For example,
the initial state of the peripheral is considered disabled by default and to enable it you
have to use the relative Peripherals Block in the point of the program where you need the
peripheral working.

· Define the Global Variables
You can define the Global Variables’ name and type through the apposite window re-
called from the Project Window.

· Create the Data Tables
If look-up tables or constants are needed in the program, use the Tables editor by open-
ing it from the Project Window.

· Create the Block-Diagram
It is possible to design a program, composed by a main program and by procedures di-
rectly defining the program’s block-diagram. After opening the main Program window, or
a procedure’s window, to draw the program’s block-diagram, you must choose the type
of block you want to insert by clicking on the relative the Blocks Editor toolbar button,
and then click on the client-area to insert as many blocks as you desire.
You can perform the same operations with the other blocks and connect them according
to the logic flow of the program.
The link between two blocks is performed by means of click & drag operations. The
blocks designed and interconnected can be selected to be modified, moved, deleted and
so on. The links can be extended, shortened, disconnected, or deleted.

· Open the associated editor of each block to program the action to be performed
Each block you insert in the flow-chart, corresponds to a suited editing environment that
can be opened by double-clicking on it (except for the blocks that have not an associated
editor). For example:
The editing tool of the Arithmetic Block is a text editor that allows to write the arithmetic
operations to be performed by the processor. It is possible to insert conditional state-
ments among the arithmetic instructions inside an Arithmetic Block. Refer to further
paragraphs for the description of the available operations and their grammar.
A double-click on the Fuzzy Block allows to open the Fuzzy System Editor, the environ-
ment to define Fuzzy Variables, the Membership Functions and the Fuzzy Rules. A pro-
ject can have more than one Fuzzy Block defined in different points of the program and
this allows to apply fuzzy adaptive control algorithms. The structure of the fuzzy control-
ler and the Membership Functions are defined in a graphical way, while the rules are de-
fined through the Rule Editor.
The Conditional Block allows to modify the program flow according to defined condi-
tions.
The Assembler Block allows to perform the programming of the device directly in the as-
sembler of the chip.
The Folder Block allows to insert a group of blocks in a separate folder window, so as to
simplify the block-diagram routine.
Moreover, it is possible to manage the interrupts and peripherals Start/Stop by means of
apposite blocks.

FUZZYSTUDIO™ 4.1

14

· Define the interrupts service routines and procedures.
To be able to define the service routines or procedures, in terms of instructions or com-
mands, you work as in the main program, but inside the client area related to each inter-
rupt and procedure, recalled from the Project Window.

· Compile the project to generate the debugging and the machine codes.
The project compilation is carried out choosing COMPILER from the Tools menu. Then,
the Output Window opens displaying the program errors, if any, or a message of suc-
cessful compilation. After the compilation, some files are generated: a file containing the
program listing in the FSCODE language; an Assembler code file; a file containing infor-
mation used by the Debugger; and the code to be loaded in the target device memory. In
case of errors in the compilation, you have to correct and compile your program again.
Code lines that have generated errors can be easily reached by double-clicking over the
error message in the Output Window.

· Use the Debugger to validate the program.
After the compilation has been successfully completed, the program can be tested by us-
ing the Debugger. The Debugger is a tool that allows to emulate the processor and its
on-chip peripherals according to the defined program. The simulation step considered
by the Debugger is the half clock cycle then the graphics that it is able to produce are in
function of the time. You can select the signals and/or the registers to visualize and
choose the time interval to simulate. Moreover, it is possible to establish the breakpoints
on the program and go step-by-step to better examine the behavior of the device accord-
ing to the program. You can also supply the input signals set to the chip to simulate exter-
nal connections to the input pins defining them easily by using the Stimulus Editor. The
registers values and the status of the selected signals can be visualized in a text format
in the Watch window and others or graphically plotted in the Plot window. If the results of
the simulation are not satisfying, appropriate changes have to be performed to the cur-
rent program stored in memory.

· Program the device with the board supplied with FUZZYSTUDIO™4 Kit.
The final step is to program the target device memory by means of the programming
functions and the appropriate electronic board connected to the PC through the parallel
port.

· Test the real application.
Now you can insert the programmed chip in your own application and test it.

15

3 - PROJECT MANAGEMENT

This chapter describes the following topics:

• FUZZYSTUDIO™4.1 Main Windows

• FS4 project files management

• FS4 project management by means of the Project Window

The FUZZYSTUDIO™4.1 Main Window

This section provides an overview of the major elements of the FUZZYSTUDIO™4.1 Main
Window, such as menus, toolbar and status bar.

The Main Window appears as soon as the program is started. The available menu com-
mands and the enabled toolbar buttons are useful to create a new project or to load an exist-
ing project file. Commands to show/hide toolbar and status bar are also available. The Help
commands are always available.

The FUZZYSTUDIO™4.1 Main Window application menus
The following menu items are available in the Main Window:

File Contains commands to create a new project, to open an existing one or to change
the printer and printing options. The list of recently used files is also provided to ac-
cess quickly to the projects.

View Contains commands to show or hide the Main Window toolbar and Status bar.

Help Contains commands to access and use the help.

Fig. 3.1 - Main Window

FUZZYSTUDIO™ 4.1

16

Fig. 3.2 - Main Window toolbar

Hide/show ProjectTreeCompiler, Debugger,
Programmer

Print, About, Help on LineCut, Copy, Paste

New, Open, Save

The FUZZYSTUDIO™4.1 Main Window toolbar
The most frequently used commands can be executed quickly by clicking over the corre-
sponding buttons available on the toolbar.

The FUZZYSTUDIO™4.1 Main Window status bar
The status bar displayed at the bottom of the Main Window provides a brief description of
the toolbar command currently pointed by the mouse cursor.

Fig. 3.3 - Main Window status bar

3 - PROJECT MANAGEMENT

17

Project Files Management

FUZZYSTUDIO™4.1 stores the project data into a single file with the extension .FS4. The
commands for the project file management (such as SAVE or OPEN) can be selected from
the FILE menu. The enabled commands of the FILE menu are different according if there is
an opened project or not. If the project has not been opened yet, the commands available for
the project file management are the NEW and the OPEN commands.

The workspace status and some user settings are saved automatically, when closing the
project, in a file with .FSW extension.

Starting a New Project
The NEW command allows to start a new project. When you choose this command,
FUZZYSTUDIO™4.1 displays the New Project dialog box to define the project name, spec-
ify the target device and describe the project.

The project name must be compatible with a standard file name format because the project
name will be used as project file name with the extension .FS4. It is also possible to specify a
path to locate a project file in a directory different from the default one. The BROWSE button
opens a dialog box that allows to select quickly the directory of destination of the project file.

Note: This file is not generated when performing the command NEW, but after a SAVE or
SAVE AS command. In particular, the SAVE AS command allows to change the name of the
file (and the name of the project) and its destination. It is easier to keep the default name i.e.
UNTITLED and then decide later where to store it and its name.
The target device list contains the names of the devices installed in the current version of
the development environment. If the target device of your application is not included in the
list, please contact STMicroelectronics or open the Fuzzy Logic Web pages to get an up-
dated version.

The New Project dialog-box also contains a text box where it is possible to write notes about
the project or any information you need to recall. This information can be read or modified
later by choosing the PROJECT INFO item from the FILE menu.

Working with an existing Project
The OPEN command allows to open a project previously saved. On the OPEN command the
standard Open dialog box pops-up, allowing you to select the project file to be loaded.

The CLOSE PROJECT command allows to quit the current FUZZYSTUDIO™4.1 project.
Then, you are asked to save the project if you have carried out some modifications not
saved yet.

The SAVE command directly updates the project file. A simple backup mechanism is imple-
mented by copying the project file to a file with .BAK extension before updating it. In this
way, you can open the current project data and the previous version. If no modification has
been carried out after the last saving, the SAVE command is disabled.

On the SAVE AS command the standard Save As dialog box pops-up, allowing you to
change current project name. The Save As dialog box pops-up also performing the SAVE
command when the project name has non been specified yet. SAVE commands will prompt
for confirmation before overwriting an existing file.

The PROJECT INFO item allows to read the information relative to the project (Target Chip,
name, working directory) and to read/write the user’s project description.

To print the active window of the project use the PRINT command in FILE menu. PRINTER
SETUP and PRINT PREVIEW commands are also available.

FUZZYSTUDIO™ 4.1

18

Project Window

After creating a new project or opening an existing one, the Project Window is displayed on
the left side of the Main Window. This is a “docking window” i.e. it is fixed in a dock along any
of the four borders of the Main Window or it can be put outside. The Project window can be
shown/hide by using the PROJECT TREE VIEW command from the VIEW menu or using
the apposite toolbar button.

The Project Window allows you to access any part of the project and define user program
procedures. It is organized in tree-view format, so you can access the parts of the program
working as with the directory browser of the Windows 95 Explorer. The items (nodes) on the
top of the tree are the following:

• Main Program

• Interrupts

• Peripherals

• Procedures

• Variables

• Tables

Click a plus or minus sign to expand or contract a node, in order to show or hide the items
contained inside the node. Variables and Tables nodes cannot be expanded because
they have not sub-nodes.

Fig. 3.4 - Project window

3 - PROJECT MANAGEMENT

19

Main Program
Double clicking the Main Program item, the Blocks Editor window opens, allowing the edit-
ing of the Main Program block-diagram. All the program starts with the Start Block in the
Main Program, after completing the configuration of the device as stated in the Peripherals
Configuration tool.

Expanding the Main Program node clicking on the plus sign, the already inserted blocks are
shown: double-clicking on them the relative contents is opened. Sub-nodes relative to the
Folder Blocks can be further expanded so that they show the blocks contained in them.
Right-clicking the mouse on the nodes representing a block, the pop-up menu opens dis-
playing the blocks’ related commands:

Open opens the editor associated to the block.

Close closes the editor associated to the block if open.

Rename opens the dialog-box to change the block’s name.

Delete deletes the block.

Some block types support only part of the previous command. If the block is a Call Block,
two additional commands are available:

Open Procedure opens the called user procedure.

Hide the procedure label hides the name of the procedure next to the call block.
If the Block is a Send or Receive Block already set, you can hide/show the related active La-
bel. Refer to the Blocks Editor description for further information on these commands.

Interrupts
Clicking on the plus sign of the Interrupts node, the sub-nodes related to the interrupt ser-
vice routines are shown. Double-clicking on one of them, the Blocks Editor to implement the
interrupt routine opens.

Because the interrupt is an asynchronous event, the interrupt service routines are sepa-
rated by the Main Program. The interrupt service routines editing windows are the same as
the Main Program, with the exception that they start with the IRQ Block and end with one or
more RETI Blocks.

Expanding the interrupt node, clicking on the plus sign, the already inserted blocks are
shown: double-clicking on them the relative contents is opened. Sub-nodes relative to
Folder Blocks can be further expanded so that they show the blocks contained in them.
Right-clicking the mouse on the nodes representing a block, the pop-up menu opens dis-
playing the blocks’ related commands, as described before for the Main Program.

Peripherals
Double-clicking the Peripherals item, the Peripherals Configuration property-sheets opens.
Each sheet refers to the configuration of one peripheral or device functionality and it is com-
posed by some controls that allow to specify the configuration (see chapter 4).

Expanding the Peripherals node, clicking on the plus sign, the peripherals list is shown.
Double-clicking on one of them causes the opening of the property-sheet with the sheet re-
lated to the peripheral put on top. The nodes are not further expandable and the only com-
mand available by right-clicking the mouse is the OPEN command.

FUZZYSTUDIO™ 4.1

20

Procedures
From this node, user procedures can be created by right-clicking the mouse. The com-
mands available from the pop-up menu are:

Create Procedure:

creates a new procedure node with default name “Procedurex”, being x a progressive num-
ber.

Create Procedure and Open:

creates the procedure node and opens the editor window to define the procedure’s
block-diagram.

After you create the procedures, they appear as sub-nodes of the tree-view. Right-clicking
the mouse on them, the pop-up menu opens displaying the blocks’ related command, as de-
scribed before for the Main Program.

The created procedure names are added in the list shown in the Call Block editor. Proce-
dures start with the Start Block and end with one or more Return Blocks.

Deleting a procedure, you are requested for confirmation twice: the second time you are in-
formed about the Call Blocks that are using the procedure, if any.

Variables
The item Variables has not sub-nodes and the only available commands are OPEN and
CLOSE, accessed by right-clicking the mouse. Double-clicking on the item also opens the
Variables window.

The Variables window shows the already defined and Predefined Variables (see Chapter
4), their types and properties, and allows the definition of new user variables to be used in
the program.

See Chapter 4 to learn more about Variables and how to define them.

Tables
The item Tables has not sub-nodes and the only available commands are OPEN and
CLOSE, accessed by right-clicking the mouse. Double-clicking on the item also opens the
Tables definition editor.

The Tables definition editor shows the already defined constants and tables (see Chapter
4), their types and values, and allows the definition of new tables and constants to be used in
the program.

See Chapter 4 to learn more about Tables and constants and how to define them.

21

4 - INITIAL SETTINGS

In this chapter you will learn how to configure the target device peripherals and to define
the variables and data tables. The topics described are the following:

• Variables window and Global Variables.

• Data Tables definition Windows.

• Peripherals configuration property-sheet.

Variables Window

User-defined variables are called Global Variables. They can be used in the program inside
the blocks that affect the RAM memory locations (such as Arithmetic Block). Each Global
Variable is characterized by name, type and memory location: the user establishes the first
and the second one and the Compiler automatically fixes the last.

The Predefined Variables are variables with a predefined name, supplied by the environ-
ment. They address to particular registers of the device target (typically the peripheral’s
ones). These variables cannot be changed by the user but can be used as the Global Vari-
ables to interact with the peripherals or the I/Os. Some of the Predefined Variables are
read-only or write-only, when both readable and writable they refer to different memory lo-
cations at the same time.

The Variables window is the tool to define and initialize the Global Variables and show the
Predefined Variables. To open the Variables window double-click the VARIABLES node in
the Project Window tree-view.

Fig. 4.1 - Variables Window

FUZZYSTUDIO™ 4.1

22

The Variables window is composed by four fields:

Name: shows the variables names (user-defined or predefined)

Type: shows the variables type (byte, signed byte, word, signed word)

Value: To edit and show the initialization value

Attributes: shows the variables attributes (read, write, predefined, locked)

The Predefined Variables cannot be modified. The available Predefined Variable list de-
pends on the chosen target device. See Appendix A to see the Predefined Variables for
each device.

To insert a new Variable:

1. Right-click an empty point on the Variables window client-area;

2. Select the NEW VAR command and the variable type from the pop-up menu;

3. Change the default name NewVarX, being X a progressive number, with the name you
like.

A new Global Variable can be inserted by pushing the INSERT key or using the toolbar but-
ton as well.

To initialize a Variable:

1. Click on the value field of the variable;

2. Edit the initialization value and push the ENTER key;

Act in the same way to change a previously set value.

To modify an existing Global Variable:

• Right-click the variable to be changed then:
− select the command RENAME from the pop-up menu if you want to change the variable

name;
− select the command SET TYPE and choose the type if you want to change it;
− select the command DELETE or push the Delete key or click the toolbar button if you

want to delete the Global Variables;
− select the commang EDIT VALUE to edit the initialization value of the variable;
− select the command REMOVE ALL to delete all the Global Variables;

The same commands are available in the menu EDIT.

The variables have attributes that indicate the actions that can be performed on them.
The attributes belong to the variables and cannot be changed. They are indicated with
the following letters:

R indicates that the variable is readable

W indicates that the variable is writable

P indicates the predefined variables

L indicates that the variables cannot be modified (Locked) such as the predefined ones.

Note: The maximum number of Global Variables that can be defined depends on the target
device RAM space and on the dept of the calls to subroutines and interrupts. Actually the
system stack uses the last RAM memory location, filling them from the last, two bytes for
each call level.

4 - INITIAL SETTINGS

23

Filter dialog-box
You can decide the variable types to be shown by using the Filter dialog-box opened by se-
lecting the command SET FILTERS from the EDIT menu or by clicking the apposite button
in the variables window toolbar.

Select the variables type to be shown in the check-list box by checking them;

Check the “Show predefined” check-box to show the Predefined variables folder.

Note: You cannot change the type of an existing variable with a filtered type: select the rela-
tive filter check-box and then change the type.

Fig. 4.2 Filter dialog-box

FUZZYSTUDIO™ 4.1

24

Tables Window

The Tables window is the tool to define data tables (i.e. vector of constants) and constants.
It is useful to implement look-up tables and the constant definition allows the use of parame-
ters improving the readability of the program. Tables can be used in the program inside the
blocks that affect the RAM memory locations (such as Arithmetic Block). Data are stored in
the device’s Program Memory.

To open the Tables window double-click the TABLES node in the Project Window
tree-view.

Fig. 4.3 - Tables window

Fig. 4.4 - Tables window toolbar

The Tables window is composed by three fields:

Name: shows the tables and constants names

Type: shows the data type (byte, signed byte, word, signed word)

Value: shows the tables data values.

New
constant

New Table

New Element Delete

4 - INITIAL SETTINGS

25

To define a new table:

1. Right-click an empty point on the Table window client-area;

2. Select the NEW TABLE command and the data type from the pop-up menu;

3. Change the default name “TableX”, being X a progressive number, with the name you
like;

4. Set the value of the first element of the table, according with the type range, and push
ENTER;

5. Click the apposite toolbar button to insert the next value.

To define a new constant:

1. Right-click an empty point on the Table window client-area or an existing table name;

2. Select the NEW CONST command and the data type from the pop-up menu;

3. Change the default name “ConstX”, being X a progressive number, with the name you
like;

4. Set the value of the constant, according with the type range, and push ENTER.

To modify an existing table or constant:

1. Right-click the table or constant to be changed;

2. Select the command RENAME from the pop-up menu if you want to change the name;you
can do the same by clicking over the selected name and editing the new name;

3. Select the command SET TYPE and choose the type if you want to change it;

4. Select the command DELETE or push the Delete key or the apposite toolbar button if you
want to delete the table or the constant.

To modify a table or a constant value:

1. Click on the value you want to change;

2. Edit the new value and push ENTER key.

To add a new element in a table:

1. Select the element of the table where you want to insert the new one;

2. Push the INSERT key or the apposite toolbar button to add the element in the position of
the selected one;

3.Edit the value and push ENTER.

FUZZYSTUDIO™ 4.1

26

To append a new element in a table:

1. Select the table where you want to insert the value;

2. Click the apposite toolbar button to add the element;

3. Edit the value and push ENTER.

To delete a table element:

1. Select the element to be deleted;

2. Push DELETE key or select the command DELETE form the pop-up menu or click the
apposite toolbar button.

Note: To execute the INSERT or MODIFY commands you can use the pop-up menu, the
menu EDIT of the main window, the toolbar or the keyboard as well. Executing insert or
modify commands on an empty point of the client-area or when a table or constant name is
selected you will insert a new table or constant. In addition you can move along the values
using the arrows keys.

4 - INITIAL SETTINGS

27

Fig. 4.5 - Peripheral Configuration property-sheet

Peripherals Configuration

The device configuration is usually a hard task for programmers. By using the Peripherals
Configuration property-sheet it becomes easy, because you have to select the configura-
tion features instead of programming them.

The Peripherals Configuration property-sheet contents depends on the selected target de-
vice. You can find a complete description of each peripheral type configuration sheet in Ap-
pendix A.

To access to the Peripheral Configuration property-sheet double-click the PERIPHERALS
node in the Project Window tree-view or the sub-node related to the peripheral to be config-
ured.

The property-sheet is a special kind of dialog box that has three main parts: the containing
dialog box, one or more property pages (sheets) shown one at a time, and a tab at the top of
each page that you can click to select that page. Each page refers to the setting of a single
peripheral, which can be performed selecting the required features by means of
check-boxes or radiobuttons and specifying data by means of text-boxes.

If you do not intend to use a peripheral, default configuration is assumed, that corresponds
to the settings you can find before modifying the property-page.

• Click OK or APPLY button to confirm the settings.

• Click CANCEL button to delete the last modifications.

FUZZYSTUDIO™ 4.1

28

29

5 - BLOCKS EDITOR

The Blocks Editor is the tool to design the block diagram of the program parts. The Block
Editor is available in the following environments:

• Main Program

• Interrupt Service Routines

• Procedures

• Folders

The use of the Block Editor is the same for all the environments listed above, with some
exceptions that will be described later in this chapter.

In this chapter you will learn to:

• Edit a block diagram

• Insert blocks and links

• Use standard editing commands with blocks and links

Blocks Editor Window

This section provides an overview of the major elements of the Blocks Editor such as
menus, toolbar and status bar. These are the same in all environments based on Blocks Edi-
tor tool, with some exceptions as described later in this chapter.

Fig. 5.1 - Main Program Blocks editor

FUZZYSTUDIO™ 4.1

30

Blocks Editor menus
The following menu items are available when the Blocks Editor is open in foreground:

File Contains commands to create, open, close, save and print window contents
and to visualize the project's information.

Edit Provides standard editing commands.

View Contains commands to hide/show toolbars, status bar, Project and Output
windows.

Tools Contains commands to run Debugger, Compiler or Programmer tools.

Window Contains commands related to window management.

Help Contains help commands.

Blocks Editor window toolbar
The most frequently used commands can be executed quickly by clicking over the corre-
sponding buttons available on the toolbar of the following environments:

• Main Program

• Procedures

• Interrupt routines

• Folders

Fig. 5.2 - Blocks Editor toolbar

Blocks Editor window status bar
The Status Bar displayed at the bottom of the Blocks Editor provides a brief description of
the toolbar command currently pointed by the mouse cursor.

Fig. 5.3 - Blocks Editor status bar

Arithmetic , Assembler
Send, Receive

Fuzzy Block
Import from File

Enable
Disable
Reset
Mask

Priority

Wait
Halt

Peripherals
Blocks

Restart, Links

Condition
Folder
Call

5 - BLOCKS EDITOR

31

FUZZYSTUDIO™4.1 Blocks

The blocks available in the FUZZYSTUDIO™4.1 Blocks Editor are the following ones:

Icon Block name Description
Start Starting point of the program or procedure

Fuzzy Allows to perform the fuzzy functions

Arithmetic
Carries out arithmetic and logic operations

Assembler
Allows to insert arithmetic instructions in Assembler

Conditional Modifies the program flow in relation to user-defined conditions.

Interrupts Disable Disables globally the interrupts

Interrupts Enable Disables globally the interrupts

Interrupts Reset Resets all pending interrupts

Interrupts Mask Enables selectively interrupts

Interrupts Priority Manages interrupts priority

Peripherals Group of blocks that enables/disables and sets/resets the pe-
ripherals.

Send Sends the value to a peripheral coming from a register

Receive Receives a value from a peripheral and stores it in a RAM loca-
tion

Call Calls user-defined procedures

Wait Stops the program until the first interrupt signal

Halt Puts the device in Halt mode

Restart Restarts the program

Return Ends the user-defined procedures

IRQ Starts a interrupt request service routine

RETI Ends a interrupt request service routine

Folder Block Allows to group blocks

Links Connect two different parts of the program

FUZZYSTUDIO™ 4.1

32

Type of block Description
Return block Return point of the procedures

RETI block Return from interrupt service routine

Folder’s return block Folder's exit point

In a Block Editor window not all the blocks are available at the same time. Some of them can
be used only in particular windows. For example, the RETI block is available only in
Interrupts Routines Blocks Editor windows.

The Links are not proper blocks, but some functionalities are similar to the ones of the "ob-
ject" block.

Block Diagram Starting Point

Each block diagram edited with the Blocks Editor has a starting point, represented by a par-
ticular block with no associated editor. This block is inserted automatically by the editor and
cannot be removed. In the following, the blocks used as block diagram starting points are
listed:

Block diagrams have also one or more exit points, except the Main Program. They are
the following:

Labels

A label, i.e. a symbolic name, is associated to each block. Such label represents the pro-
gram address where the first instruction contained in that block starts.

Default names are inserted automatically when inserting the block, but they can be
changed anytime by selecting the item RENAME from the pop-up menu that opens by
right-clicking on the block.

You can move a label around the referring block by click & drag operations to the desired po-
sition. Labels can be snapped on the cardinal points or positioned anywhere around the
block according to the activation of the SNAP ON or SNAP OFF item you can choose from
the pop-up menu which opens by right-clicking on the label.

Note: Labels can contain up to 32 characters including spaces.

5 - BLOCKS EDITOR

33

Working with Blocks

This paragraph supplies you information on how to work with the Blocks Editor, in order to
create the Block Diagram of your program.

Inserting blocks
The Block Diagram is built by inserting the appropriate blocks, by using the mouse and the
toolbar.

To insert a block:

1. From the Block Editor window toolbar select the block you want to insert in your diagram.

2. Position the mouse cursor anywhere on the project window.

3. Click the left mouse button. The new block is inserted in your project.

4. Click & drag the mouse on the block and then release it to move the block in the desired
position.

After inserted, a Block can be freely moved inside the client-area by using the click &
drag. Moving a single link determinates the moving of the connected blocks. Moving a
block determinates the modification of the link because the connected edge moves with
the block.

Linking blocks
Links connect two blocks and an arrow indicating the sequence of the program execution
characterizes them. A link cannot be connected to a block already linked with the same di-
rection: each block can have only one input and one output link. The Conditional Block has
two output links tagged with "Yes" and "No".

To link two blocks:

1. From the Block Editor window toolbar select the LINK button. In this way you commute to
the link insertion modality

2. Position the mouse cursor on the first block to be linked

3. Click the left mouse button

4. Drag the mouse on the second block and if you still haven't released the mouse button
you can release it now or click again.

You can add a link to any block, without necessarily linking the block to another one. To
do this, double-click on the client area, the open link is indicated with a red node. The
links can be connected to other links allowing to carry out cyclical programs; a black
node on the link indicates the connection. Blue nodes indicate a link edge connected to
another link edge. After you connect the links these can be moved freely in the client
area.

FUZZYSTUDIO™ 4.1

34

Disconnect blocks and links
Links and Blocks can be disconnected by using the pop-up menu commands, accessed by
right-clicking the item with the mouse.

To disconnect a Block from the diagram:

• select the Disconnect command from the pop-up menu.

To disconnect a link, select one of the following commands:

• Disconnect from Start Block: disconnects the link from the source block

• Disconnect from the End Block: disconnects the link from the destination block

• Disconnect from both: disconnects the link from both blocks

• Split: inserts a blue node in the link spitting it in two connected links. You can do that dou-
ble-clicking on the line as well.

Single and multiple selection of blocks
You can select a single block or a link just clicking on it. Take note that this operation cannot
be performed in link insertion modality. In this case, you will have to activate the cursor be-
fore selecting the block.

In cursor modality, it is possible to simultaneously select more than one block by a click &
drag operation. This will open a frame in which the blocks are selected. It is also possible to
select several blocks one by one by clicking the mouse on the block and holding down the
CTRL button until the end of the selection.

The blocks and the links selected can be easily recognized because they change color: the
blocks become gray and the links become green.

Deleting blocks and links
To delete blocks or links:

• select the block(s) or link(s) to be deleted (single or multiple selection)

• push the DEL key or select the command DELETE from the pop-up menu or from the EDIT
menu.

You are always asked for confirmation before deleting a block then:

• click YES button to confirm the deleting of the single block

• click YES TO ALL to confirm the deleting of all the selected blocks

• click NO to avoid the deleting of the single block

• click QUIT to end the deleting procedure

5 - BLOCKS EDITOR

35

Opening and closing blocks
To open the block means to open the editor window associated to the block, in order to
specify the commands and settings to be performed by the block.

To open a block:

• double click the block

or

• select the OPEN command from the pop-up menu, accessed by right-clicking the mouse
on the block.

The opened blocks are identified in the block diagram by a little folder located on the
lower-right side of the icon representing the block. Double-clicking on such icon deter-
mines the editor window to become active in foreground.

In the same way, to close the block means to close the associated editor.

To close a block:

• close the editor's window

or

• select the CLOSE command from the pop-up menu, accessed by right-clicking the mouse
on the block. This command is active only when the block is opened.

Copying blocks
Standard editing commands such as COPY, CUT and PASTE are provided to duplicate
blocks and links into other parts of the project or in other projects. Blocks are copied with
their contents, i.e. with the commands and settings specified in the associated editor.

To copy, cut or paste blocks and links:

• select the block(s) or link(s) (single or multiple selection)

• select the command related to the action to perform from the EDIT menu or click the appo-
site toolbar button in the Main Window.

The COPY and PASTE commands allow to copy blocks from a project to another one.
When pasting one or more blocks, the consistency of the operation is checked:

1. If the block already exists with the same name, the pasted block's name is modified ap-
pending to it a progressive number.

2. If the block settings specify a not yet defined variable, a warning message is issued and
you are asked to paste the block empty or to keep the setting and define later the variable.
This control cannot be performed when pasting Arithmetic or Assembler blocks.

3. If there is no room for Global of Fuzzy Variables or Membership Functions added with the
paste operation, a message is issued and the pasting of the block is aborted.

If you want to copy the block(s) as part of the diagram drawing, select the command
COPY ON CLIPBOARD AS BITMAP from the EDIT menu. This option allows you to in-
clude the block diagram in documents and similar.

Note: Paste command is activated only after performing a copy or cut operation.

FUZZYSTUDIO™ 4.1

36

Other commands
Right-clicking on the Block Editor client-area when in cursor modality, a pop-up menu ap-
pears containing the following items:

Grid: Enables or disables the grid

Line up: Aligns the Block Editor objects on the grid

Moreover, double-clicking the client area when in cursor modality, the mouse cursor is
modified allowing the moving of the entire diagram.

37

6 - FUZZY BLOCK

This chapter is dedicated to the Fuzzy Block description and the use of the associated edi-
tor. This is the most complex block, due to the several options available. The Fuzzy Block al-
lows to carry out the fuzzy functions to be performed by the ST52 fuzzy family
microcontrollers.

The possibility to define more than one Fuzzy Block in the block diagram, allows to use the
fuzzy system which is more appropriate to the general conditions of the system and then to
realize an adaptive fuzzy control system.

Double-clicking on the Fuzzy Block icon, the fuzzy system editor opens, allowing you to
graphically define the fuzzy system structure, fuzzy variables, Membership Functions and
fuzzy rules. The environment is composed by some editors, each of them suited for its func-
tions. The first editor you can find when the environment is opened, is the fuzzy system edi-
tor, from where it is possible to access to the others editors.

In this chapter you will learn to:

• Edit the fuzzy system

• Define fuzzy variables

• Draw membership functions

• Write fuzzy rules

• Import Fuzzy Systems

Fig. 6.1 - Fuzzy System Editor

FUZZY
BLOCK

FUZZYSTUDIO™ 4.1

38

Fuzzy System Editor

The Fuzzy System Editor allows to define the fuzzy system structure, in terms of input and
output variables and the associations with the Global or Predefined variables. This action is
performed inserting as many blocks, representing Input and Output variables, as you need
in your system.

The Input and Output variables blocks represent the variables and allow to access to the
editors to define their characteristics by double-clicking on them. Associations with the
Global or Predefined Variables can be easily performed and it is highlighted in the fuzzy
system structure with tags linked with the variables blocks. The base of knowledge is repre-
sented by the Rules Block inserted and linked automatically, that allows to access to the
Rules Editor.

Fuzzy System Editor menus
The following menu items are available in the Main Window when the Fuzzy System Editor
is open in foreground:

File Contains commands to create, open, close, save and print window contents
and to display the project’s information.

Edit Provides standard editing commands.

View Contains commands to hide/show toolbars, status bar, Project and Output
windows.

Tools Contains commands to run Debugger, Compiler or Programmer tools.

Insert Contains commands to insert fuzzy variables.

Window Contains commands related to windows management.

Help Contains help commands.

Fuzzy System Editor window toolbar
The most frequently used commands can be executed quickly by clicking over the corre-
sponding buttons available on the toolbar:

Fig. 6.2 - Fuzzy System Editor toolbar

Fuzzy System Editor window status bar
The status bar displayed at the bottom of the main window when Fuzzy System Editor is
open in foreground, provides a brief description of the toolbar command currently pointed
by the mouse cursor. In addition, on the right side you can see the number of the defined in-
put variables, output variables and rules.

Fig. 6.3- Fuzzy System Editor status bar

Cursor
Input Var

Output Var

Share Var

6 - FUZZY BLOCK

39

Fuzzy System Editor

The Fuzzy System Editor works as the other Blocks Editors: you can insert, move, delete,
rename, open and close the blocks acting as explained in Chapter 5 in this manual. Links
are inserted automatically, after writing the fuzzy rules and cannot be disconnected.

If you open the Fuzzy System Editor for the first time, you will find only the Fuzzy Rules
Block, that allows to access to the Rules Editor by double-clicking on it. Notice that if the
variable and membership functions are not yet defined, you cannot access to the Rule Edi-
tor. The Fuzzy Rules Block is inserted automatically and cannot be deleted.

To insert input fuzzy variables:

• click the apposite toolbar button or select INPUT VAR from the menu INSERT

• click the mouse button on the client area where you want to insert the input variable block.

To insert output fuzzy variables:

• click the apposite toolbar button or select OUTPUT VAR from the menu INSERT

• click the mouse button on the client area where you want to insert the output variable
block.

The icons representing fuzzy variables allow to access to the programming environment
of the variables characteristics, such as associated Membership Functions, Universe of
Discourse boundaries, initialization with global or predefined variables.

Note: You can insert up to 8 input fuzzy variables and up to 128 output fuzzy variables for
each fuzzy block.

Fuzzy Variables Initialization and Storage

To assign to the fuzzy input variable, a value to be computed, you have to associate it to a
Global or Predefined variable containing the crisp value.

To initialize an input fuzzy variable:

1. Right-click with the mouse on the Input Variable block you want to initialize.

2. Choose INITIALIZE from the pop-up menu. The window containing the list of the avail-
able Global and Predefined Variables opens.

3. Select the variable and click OK button.

Fig. 6.4 - Fuzzy Variable Initialization dialog box

FUZZYSTUDIO™ 4.1

40

To store the fuzzy output in a global or predefined variable it is possible to act as for the
initialization:

1. Right-click with the mouse on the output variable block where you want to store the value.

2. Choose STORE IN from the appearing pop-up menu. The window containing the list of
the available Global and Predefined Variables opens.

3. Select the variable and click OK button.

The initialization and storage can be carried out also by means of the Var Properties dia-
log-box (see later in this chapter). After initialization and storage phase, in the Fuzzy
System Editor window, tags showing the variables’ names are linked to the fuzzy vari-
ables blocks (see fig.6.1). Right-clicking over the tag, the pop-up menu opens allowing
you to select the EDITcommands, to modify the association, or DELETE, to cancel the
association and the tag.
Note: If the initialization of the variable is omitted, an error message will appear during the
compilation.

Shared Variables

A shared variable is a variable used in several different Fuzzy Blocks, with the same charac-
teristics, and will therefore use the same memory locations to store the Membership Func-
tions, this means that the variable is the same. Then, each change performed on one of the
shared variables will have effect on all of them.

To insert a shared variable:

1. Select SHARE VAR from the INSERT menu or click the apposite button in the Fuzzy Sys-
tem Editor window toolbar.

2. A selection window, organized as tree-view, opens. In the first level you can find the al-
ready available fuzzy systems; in the second level of each item the available fuzzy vari-
ables are listed

3. Choose the fuzzy system, to which belongs the variable to share, by clicking on the plus
sign next to the system name to show the available variables.

4. Select the variable to share. The window disappears and the mouse pointer is enabled to
insert the variable on the fuzzy system. In both the fuzzy systems sharing the variable,
the icon representing it changes its icon indicating that such a variable is shared by sev-
eral blocks.

Fig. 6.5 - Variables Sharing dialog box

6 - FUZZY BLOCK

41

The name of the shared variable is the same in all the blocks in which it is used: a rename of
one of them will determine the change in the other fuzzy systems in which it is shared.

Note: it is not possible to insert in a fuzzy system a shared variable that has the same name
of a fuzzy variable already existing in that system. In this case, rename this last variable and
try again to insert the shared variable.

Variables and Membership Functions Editor

Double-clicking the fuzzy variable icon in the Fuzzy System diagram, the editor for the defi-
nition of the variable’s properties and its associated Membership Functions opens.

Fig. 6.6 - Variables Editor

It allows you to:

• change the variable’s name

• modify the Universe of Discourse boundaries

• define or modify the association with the Global and Predefined variables

• define graphically or in numeric way the Membership Functions

Variables Editor menus
The following menu items are available in the Main Window when the Variables Editor is
open in foreground:

File Contains commands to create, open, close, save and print window contents and
to visualize the project’s information.

Edit Provides commands to edit Membership Functions and to copy them on clip-
board.

View Contains commands to hide/show toolbars, status bar, Project and Output win-
dows and to open the variables properties dialog box and the MBF Report win-
dow

Tools Contains commands to run Debugger, Compiler or Programmer tools.

Options Contains commands to set up the Membership Functions Editor

Window Contains commands related to window management.

Help Contains help commands.

FUZZYSTUDIO™ 4.1

42

Variables Editor window toolbar
The most frequently used commands can be executed quickly by clicking over the corre-
sponding buttons available on the toolbar of the Variables Editor window:

Fig. 6.7 - Variables Editor toolbar

Variables Editor window status bar
The status bar displayed at the bottom of the main window when the Variables Editor is
open in foreground, provides a brief description of the toolbar command currently pointed
by the mouse cursor. In addition, on the right side you can see the number of the defined
Membership Functions.

Fig. 6.8 - Variables Editor status bar

Properties
New Mbf, Delete Mbf,

Auto Fill MBF Report
Horizontal, Vertical grid

6 - FUZZY BLOCK

43

Fig. 6.9 - Var Properties dialog box

Default name for input variables is VarInX, being X a progressive number starting from 0;
default name for output variables is VarOutX. You can change the default name or the previ-
ously defined name by writing the new name in the apposite text box.

Note: Variable names may contain only alphabetical characters, numerical digits and the
underscore symbol (‘_’). The first character must be an alphabetical one or the underscore.
Names must contain no more than 32 characters.

Default values for the Universe of Discourse boundaries are [0 , 255]. These values cor-
respond to the ones managed by the device. You can modify the logical values of the
boundaries, to customize the Universe of Discourse and relative values to the one of
your real application. These values are automatically converted by the Compiler to the
physical device range. You can change the default values, or the previously defined val-
ues by writing the new name in the apposite text boxes of the Var Properties dialog-box.
Due to its internal resolution, ST52 takes into account only 256 points in the Universe of
Discourse. Since each point is represented with 9 digits and results from the division of
the Universe width by 256, then the minimum Universe width must be [0 , 255*10-6].

Note: You must be aware that, in general, all the existing Membership functions, both for
input and output variables, are automatically stretched or shrunk to the new Universe di-
mension. Only in case the output variable M.F. have been defined directly in Fuzzy Rule
Editor (see “Creating a new Membership Function”), the Universe resizing does not modify
the M.F. crisp value and may cut off the M.F. and its related rules, if the M.F. value is outside
the new Universe boundaries.

You can associate fuzzy variables with Global or Predefined variables, by selecting the
variable from the list “Initialize from” (input variables) or from the list “Store in” (output
variables). You can also perform this operation acting as described previously in the
“Fuzzy Variable Initialization and Storage” paragraph in this chapter.

Fuzzy Variables Properties

Double-clicking over the variable’s icon or selecting the command OPEN from the pop-up
menu opened right-clicking the icon, the Variables an Membership Functions Editor opens,
allowing you to access to the dialog box for the definition of the variable’s properties. These
are the following:

• name

• Universe of Discourse boundaries

• Initialization/Storing variable

To define or modify the variable’s properties, select the command VAR PROPERTIES
from the VIEW menu or click the apposite toolbar button from the editor’s toolbar. The
Var Properties dialog box opens.

FUZZYSTUDIO™ 4.1

44

Creating a New Membership Function

The definition of the variables is completed by drawing the Membership Functions (M.F.)
associated to the variable. M.F. are created and managed by using the commands in the
EDIT menu, when the Membership Functions Editor is open in foreground, and from the
commands in the pop-up menu opened right-clicking over the editor’s client area.

You can create a new M.F. by using:

• the NEW MBF command, to create a single new M.F.

• the Auto Fill tool, to create an entire set of M.F.

• the Rule Editor (only for output variables)

• the MBF Report tool

To create a single new M.F. you can perform the NEW MBF command in the following
ways:

• choosing the NEW MBF command from the pop-up menu

• choosing the NEW MBF command from the EDIT>MBF menu

• clicking the apposite editor’s toolbar button

• pushing the INS key

The M.F. position into the variable Universe of Discourse is set as follows:

• In the center of the Universe of Discourse, if M.F. is the first to be defined.

• Shifted of the AutoShift parameter with respect to the previously defined M.F.

• Coinciding with the current cursor position in the drawing area, if using the pop-up menu and
if this position does not coincide with an existing M.F. The base width of the shape is equal to
the double of the Semibase parameter.

For more information see “AutoShift and Semibase” paragraph.

Note: For output variables only crisp M.F. can be created, according to the hardware con-
straints of the device. Admissible M.F for input variables are the triangular and the
trapezoidal ones.
The definition of M.F. for output variables is also possible by using the Rule Editor. In this
way you can set the output crisp value of the M.F., by writing it directly in the rule in editing.
However, this M.F. does not appear either in the drawing area of the relative output variable
nor in the MBF Report and cannot be managed through Variable Editor related commands.

Fig. 6.10 - Creating new Membership Functions

6 - FUZZY BLOCK

45

The Universe of Discourse resizing does not modify this M.F. crisp value but may cut off the
M.F. itself and its related rules, if the M.F. value is outside the new Universe of Discourse
boundaries.

For further information about the definition of a M.F. by using the Rules Editor, see the
“Rules Editor” paragraph.

Auto Fill tool
The Auto Fill tool allows to define a set of M.F equally spaced with just a click of the mouse.
There are three available modes to draw the M.F. set as described below.

To draw the M.F. set:

1. Open the M.F Editor.

2. Choose AUTO FILL command from the EDIT menu of from the pop-up menu or from the
apposite button in the editor’s toolbar.

3. Enter the desired number of fuzzy sets in the apposite text box.

4. Press the desired Filling Mode button.

The AutoFill tool can defines at least two M.F. and up to 16 M.F per time. If you want to
define more than 16 M.F. repeat the Auto Fill command again.

Fig. 6.11 - Autofill dialog box

Note: The Auto Fill tool does not create M.F. completely overlapped over existing M.F. So,
if you have chosen 7 M.F. to draw, which two are overlapped, Auto Fill tool creates only 5
M.F.

FUZZYSTUDIO™ 4.1

46

The filling modes work as follows:

Autoshift and Semibase parameter
When a new M.F. is generated by means of the NEW MBF command, the base width and the
distance of each M.F. is set by default to the SemiBase and AutoShift values.

Triangular M.F. have by default base half-width equal to the SemiBase value. Different
bases can be obtained changing SemiBase option or customizing each M.F. You can mod-
ify default values for AutoShift and SemiBase values via the SET AUTOSHIFT &
SEMIBASE command from the EDIT menu.

Fig. 6.12 - Autoshift and Semibase dialog box

Draws n isosceles triangular M.F. The semibase of new M.F. is calculated splitting
the Universe in n+1 equal intervals. Since x-values must be integers, the remain-
der of the integer division of the domain width by n+1 is added to the central inter-
val (or is shared out between the two central ones, if n=1 is even).

Draws two external rectangle trapezoidal M.F. all other M.F. are triangular. The
semibase of new M.F. is calculated splitting the universe in n+1 equal intervals.
Since x-values must be integers, the remainder of the integer division of the do-
main width by n+1, if any, is added to the central interval (or is shared out between
the two central ones, if n is even).

Draws two external rectangle triangular M.F. all other memberships are triangular.
The semibase of new M.F. is calculated by splitting the Universe in n-1 equal inter-
vals. Since x-values must be integers, the remainder of the integer division of the
domain width by n-1, if any, is added to the central interval (or is shared out be-
tween the two central ones, if n is even).

To change these values:

1.Choose SET AUTOSHIFT & SEMIBASE from EDIT menu

2.The related dialog box pops up showing the current values

3.Change the values writing them in the apposite text boxes

4.Press OK
Note: these values are set using the device internal measurement unit, and are independ-
ent from the chosen dimension of the variable domain. Due to the device hardware
constraints, the AutoShift and SemiBase values must belong to the [1,255] integer interval.

6 - FUZZY BLOCK

47

Modifying the Membership Functions shapes
After created, the M.F can be easily and quickly modified or moved. To do that, you first
have to select the M.F.

To select the M.F. you can either:

• Click over the M.F. shape in the M.F. Editor or

• Select the M.F. name from the apposite drop-down list-box in the M.F. editor toolbar

When selected, the M.F.’s perimeter become red, and the vertexes are surrounded by a
little square. These squares allow to modify the M.F. shape, moving the vertexes. The
crisp M.F. are similarly highlighted in red, and the vertex (the top of the line) is sur-
rounded by the square.

To modify the shape:

1. Select the M.F.

2. Click & drag the vertexes squares to the desired position
or
Click the mouse button and use the arrows keys to move the vertexes.

Note: Central vertex can be moved only along the Y coordinate with maximum degree and
between the lateral vertexes’ X coordinate. The lateral vertexes can be moved only along
the lower Y coordinate: they can have different Y coordinate only in the Universe of Dis-
course boundaries, in order to create trapezoidal M.F.

To move the shape:

1. Click & drag the shape to the desired position
or
Click the shape and move it by using the arrows keys

2. Release the mouse button

Each M.F. has a name that is set by default to “MbfX”, being X a progressive number in-
cremented each time a new M.F. is created.

To change the M.F.’s name:

1. Select the M.F.

2. Choose RENAME MBF from EDIT > MBF menu or from the right mouse button pop-up
menu.

3. The dialog box to change the M.F. name opens.

4. Write the new name in the apposite text box and click O.K.

Note: M.F. names may contain only alphabetical characters, numerical digits and the un-
derscore symbol (‘_’). The first character must be an alphabetical one or the underscore.
Names must contain no more than 32 characters.

To delete a M.F.:

1. Select the M.F.

2. Push the DEL key
or
Select the DELETE MBF command from the EDIT > MBF menu or from the right mouse
button pop-up menu.

FUZZYSTUDIO™ 4.1

48

Fig. 6.13 - Rename MBF dialog box

MBF Report tool
The MBF Report is the tool to visualize and define the M.F. in numeric form. You can per-
form the same operation with the same command of the graphical way. Each action exe-
cuted in the MBF Report tool is reflected to the graphical representation and vice versa.

Four fields compose the MBF Report tool window: the first lists the M.F. names, the others
contain the vertexes coordinates. Each coordinate is expressed by a couple of value: the
first is the position on the Universe of Discourse (X coordinate), the second is the degree of
truth (Y coordinate).

To open the MBF Report tool:

• Select the MBF REPORT item form the VIEW menu

or

• Click the apposite button in the Membership Functions Editor toolbar

With the MBF Report tool you can define, modify, delete the M.F. by using the same com-
mands and menu items as the ones described for the graphical way. In addition you can
modify the vertexes’ coordinates values or the M.F. names directly in the tool window.

To modify the M.F. name:

1. Select the M.F.

2. Click on the M.F. name.

3. Change the name and push ENTER or click the mouse button elsewhere.

To modify vertexes’ coordinates:

1. Select the M.F.

2. Click over the value to be changed

3. Change the value

4. Push ENTER or click the mouse button elsewhere

Note: Not valid values are not entered, and previous values remain unchanged.

6 - FUZZY BLOCK

49

Membership Functions Editor Options
The Membership Functions Editor can be customized by setting the environment options,
by using the commands of the OPTIONS menu. You can set the following:

• Membership Functions Editor window dimension

• M.F. shape type (filled or not)

• hide/show X axis values

• hide/show cursor coordinates

• toggle the cursor coordinates from user’s scale to the device scale

• hide/show M.F. names on print

• hide/show horizontal and vertical grids

The M.F. Editor dimension can be easily changed by modifying the window dimension.
The M.F. shapes and all the drawing area are scaled proportionally to the window new
dimensions.

The M.F. shapes are drawn filled with random colored patterns. You can disable this fea-
ture, getting not filled M.F. shapes, by toggling the FILLED MBF item in the OPTIONS
menu.

The values of the X axis, i.e. the Universe of Discourse main points, can be hidden or
shown toggling the X AXIS VALUES item in the OPTIONS menu.

The cursor coordinate can be hidden or shown by toggling the item CURSOR COORDI-
NATES from the OPTIONS menu. The cursor’s vertical coordinate (the degree of truth)
can be expressed both in logical scale (from 0 to 1) or in device coordinate (from 0/15 to
15/15). Actually the device can express the degree of truth values with four bits, so the
device values lie in the range [0 , 15]. You can toggle from logical to device coordinates
and vice versa selecting the item DEVICE COORDINATES in the OPTIONS menu.
Note: the item DEVICE COORDINATES is disabled when the cursor coordinated are hid-
den.

Fig. 6.14 - M.F. Report window

FUZZYSTUDIO™ 4.1

50

When printing the M.F. set, the name of the label can be included over the shape. To hide or
show the M.F. names on print toggle the MBF NAMES ON PRINT item in the OPTIONS
menu.

Horizontal and vertical grid can be inserted to help you in drawing the M.F. shapes. To
hide/show the grid lines toggle the HORIZONTAL GRID item and/or the VERTICAL GRID
item in the OPTIONS menu, or click the apposite toolbar buttons.

Note: when the MBF Report window is active in foreground, the only available menu items
are DEVICE COORDINATES and MBF NAMES ON PRINT.

6 - FUZZY BLOCK

51

Rules Editor

The Rules Editor is the tool to define and modify the fuzzy rules. To run the Rules Editor dou-
ble-click over the Fuzzy Rules Block in the Fuzzy System editor. If rules have been already
defined , the editor opens showing the list of the defined rules.

In order to define fuzzy rules, using Rules Editor, it is necessary to define at least one input
and one output fuzzy variable with the associated M. F. Rules Editor cannot be activated un-
til these minimal definitions have not been done.

There are two ways to write rules: by using Guided Editor or Manual Editor.

In Guided Editor, keywords, if-then operators, variables and membership functions can be
easily selected from a list-box for quickly defining the rules. This editing mode allows you to
select automatically only syntactically correct objects.

In Manual Editor, rules must be defined manually using the keyboard as a normal text editor.
Before being inserted on the list, the rule is syntactically checked to guarantee its correct-
ness: if an error occurs, its description is given in the Output window. Manual editing allows
to delete or to modify already defined rule. After being modified, a rule can replace its previ-
ous version or be added to the list. Multiple deleting is possible if a multiple selection is
done.

Fig. 6.15 - Rules Editor

The rules list is composed by two fields: the first is the progressive rule number and the sec-
ond one is the rule. You can use standard editing commands such as COPY, CUT, PASTE
and DELETE from the EDIT menu after selecting the rule(s) by clicking over it (them). Multi-
ple selection is possible by using the mouse with the SHIFT and CTRL keys. You can also
use the GO TO command from the EDIT menu to select a rule specifying its number.

FUZZYSTUDIO™ 4.1

52

Rules Editor menus
The following menu items are available in the Main Window when the Rules Editor is open in
foreground:

File Contains commands to create, open, close, save and print window contents
and to display the project’s information.

Edit Provides standard editing commands.

View Contains commands to hide/show toolbars, status bar, Project and Output win-
dows, to navigate along the error messages and to change rules fonts.

Tools Contains commands to run Debugger, Compiler or Programmer tools.

Rules Contains rule related commands, for Manual and Guided editing.

Window Contains commands related to window management.

Help Contains help commands.

Rules Editor window toolbar
The most frequently used commands can be executed quickly by clicking over the corre-
sponding buttons available on the toolbar of the Rules Editor window.

Fig. 6.16 - Rules Editor toolbar

Fig. 6.17 - Rules Editor status bar

Rules Editor window status bar
The Status Bar displayed at the bottom of the main window when the Rules Editor is open in
foreground, provides a brief description of the toolbar commands currently pointed by the
mouse cursor. In addition, on the right side you can see the number of the already defined
Rules of the currently selected rule, and the current cursor position during Manual editing.

Manual

Guided Editor
Check, Add,

Replace, Insert
Delete

Undo

6 - FUZZY BLOCK

53

Guided Rules Editor

The Guided Rules Editor is the best way to define rules. It allows to write quickly the rules,
without syntactical or typing error, supplying you all the admissible keyword, operators an
names by means of an easily selectable drop-down list-box.

To start with the Guided Editor, open the Rules Editor and select the item OPEN from the
RULES>GUIDED menu, or click the apposite button in the Rules Editor toolbar.

The Rules Editor window is modified in order to supply the controls for the guided editing.
The edit-box to show the rule in editing is placed just below the Rules Editor toolbar. Another
toolbar is added just below the edit-box, supplying the drop-down list-box for selecting
keywords, operators and names; the other buttons perform the INSERT, the ABORT, the
UNDO and the REDO commands.

The items listed in the drop-down list-box are updated after each selection, supplying the
only syntactically admissible items. In such a way you are prevented to make mistakes.

Fig. 6.18 - Guided Rules Editor

To write the rules, select the items from the drop-down list: the rule in editing is shown in the
apposite edit-box. End the rule editing by inserting it in the rules list clicking over the appo-
site button next to the drop-down list.

Notes in writing the rules:

• The keyword IF is automatically inserted when starting a new rule.

• The keyword IS is automatically inserted after the variables’ names selection.

• The NOT modifier can be added before a M.F. name or after the keyword IS.

• Open parentheses are automatically closed when selecting the THEN keyword.

• Output variables are not included in the list if previously selected.

• The top of the list shows the first item of the list but you cannot select it from there, you should
select the item from the dropped-down list.

FUZZYSTUDIO™ 4.1

54

After selecting an output variable, the top of the list becomes a text-box allowing you to
specify a numeric value as crisp M.F. instead of selecting a defined M.F. name from the
list. In such a way you can specify the crisp output M.F. directly in the rule without speci-
fying them with the Membership Functions Editor.

To specify crisp M.F. Values:

1. Write the value in the top of the drop-down list-box after the selection of the output vari-
able

2. Push the ENTER key

3. Continue the rule editing with the others consequent terms or insert the rule in the rule list

During the rule editing, it is possible to UNDO or REDO the last operation or ABORT the rule
editing by using the apposite buttons next to the drop-down list, after the INSERT button.

Manual Rules Editor

Manual editing allows to edit rules by using a normal text-editor tool. This tool is particularly
useful if you want to modify existing rules or to create new rules from the existing ones.
Using Manual Editor you can also add comments to the edited rules and edit more than one
rule at the same time.

Because writing rules with the free text editor it may be possible to make syntactical or typ-
ing mistakes, rules are checked before inserting them in the rules list.

To open the Manual Editor, select the item OPEN from the RULES>MANUAL menu, or click
the apposite button in the Rules Editor toolbar. If you are writing a rule with the Guided Edi-
tor, you can switch to the Manual Editor and complete it manually.

The Rules Editor window is modified in order to supply the text-box where to edit the rules.
You can use standard editing commands such as COPY, CUT, PASTE and DELETE using
this text-box, by selecting them from the EDIT menu or by using the right mouse button
pop-up menu. So you can copy rules from other rules list of different blocks of from other
projects.

To use Manual Editor for the definition of fuzzy rules follow these steps:

1. Write the rule in the edit-box above the rule.

2. You can now check the rule syntactic correctness selecting the command CHECK from
the RULESL>MANUAL menu or using or clicking the apposite button from the Rule Editor
toolbar.

3. Write, if necessary, comments including the text between these characters:
/* */ the string between two sequences of characters is excluded by syntactical check
// the string after two sequences of characters is excluded by syntactical check

You can write more than one rule at the same time either by writing them on one row and
separating each rule by inserting a semicolon or by using one row for each rule.

You can also write one or more rules by modifying the existing ones. In this way, the rule
editing is performed quickly because the selected rule(s) is copied in the edit-box and it
will not be necessary to write the entire rule(s) again:

• If you want to change only one rule: select the one you want to use as a model by double
clicking on it.

• If you need to modify more than one rule: copy the selected rules with the copy command
and then paste them in the Manual Editor windows.

6 - FUZZY BLOCK

55

• Modify the parts of the rule(s) you need to change.

• You can now check the syntactic correctness or insert the rule in the rules list
When an error occurs checking or inserting a rule, the Output Window opens displaying the
error message. Double clicking over the error, the wrong rule is highlighted allowing you to
easily detect the error.

Fig. 6.19 - Manual Rules Editor

Rules List updating
When the rule(s) definition has been completed, both with the Guided and Manual Editor,
the rule(s) can be inserted in the rule list by means of the following commands in the RULES
menu or by means of the corresponding button in the Rules Editor toolbar:

ADD: syntactically checks the current rule(s) and inserts it at the end of the rule
list

INSERT: syntactically checks the current rule(s) and inserts it before the selected
one

REPLACE: syntactically checks the current rule(s) and replaces the selected one(s)

Note: If you have many selected rules the INSERT command places the new rule(s) just be-
fore the first selected one. When the REPLACE command is performed all the selected
rules are deleted and substituted by the new one(s).

Rules Editor Constraints
The rule’s format depends on the input and output variables defined in the fuzzy system.
Then rules can have up to 8 antecedent terms and as many consequent terms as the output
variables.

The maximum number of rules that can be defined in the entire project depends on the avail-
able Program Memory space. Actually, fuzzy instructions and classical instructions share
the same memory space. When the entire program exceeds the Program Memory space,
the Compiler gives an appropriate error message and the code is not generated.

FUZZYSTUDIO™ 4.1

56

Rules Grammar

Use the following grammar when writing the rules:

FuzzyRule ::= IF <Antecedent> THEN <Consequent> ;
Antecedent ::= <Antecedent> OR <Antecedent> |

<Antecedent> AND <Antecedent> |
NOT <Antecedent> |
(<Antecedent>) |
<AntecedentAtom>

AntecedentAtom ::= <InputVar> IS <Mbf> |
<InputVar> IS NOT <Mbf>

InputVar ::= <Identifier>
Mbf ::= <Identifier>
Consequent ::= <ConsequentAtom>|

<Consequent> AND <ConsequentAtom>
ConsequentAtom ::= <OutputVar> IS <Crisp>
OutputVar ::= <Identifier>
Crisp ::= <Identifier> | <Number>
Identifier ::= [A-Za-z_] {([A-Za-z_] | [0-9])}*32
Number ::= ({<IntegerValue>} | {<RealValue>})
IntegerValue ::= ([0-9]+)
RealValue ::= (([0-9]*\.[0-9]+){Exponent}?)
Exponent ::= ([eE][-+]?[0-9]+)

6 - FUZZY BLOCK

57

Rules Editor Error Messages

Using Manual Rules Editor the following messages and warnings can occur:

“char” not allowed character
The character “char” is not allowed in the context.

Incomplete rule: a membership function name was expected.
A Membership Function term is missing in the rule. Complete the rule with the appropriate
term.

Incomplete rule: an input variable name was expected
A variable name is missing before a “is” keyword in the entered rule. Add the keyword in
the appropriate place or check for syntax errors.

Incomplete rule: an output variable name was expected
An output variable term is missing in the rule. Complete the rule with the appropriate term.

Incomplete rule: “is” keyword was expected
The keyword “is” has not been written after a variable name to specify the Membership
Function. Add the keyword where it is missing.

Incomplete rule: not closed comment
The comment statement in the rule was not closed with the */ character. Add the character
*/ at the end of the comment.

Incomplete rule: missing “)”
The rule in editing has not been completed before entering it because a close bracket is
expected. Complete the rule with the correct syntax adding as many brackets as
necessary.

Incomplete rule: rule without “if”
The keyword “ if ” is missing at the start of the entered rule. Add the keyword in the appro-
priate place or check for syntax errors.

“then” keyword expected: found ...
The keyword “then” is missing at the start of the consequent part of the entered rule. Add
the keyword in the appropriate place or check for syntax errors.

“name” is an invalid keyword
The specified keyword “name” is not allowed in the context. Check for syntax errors.

“name” is not an input variable
The specified name for antecedent term does not belong to the list of input variables.
Check for syntax errors.

“name” is not an output variable
The specified name for consequent term does not belong to the list of output variables.
Check for syntax errors.

“name” is not a valid membership function name
The specified name does not belong to the list of membership functions associated to the
variable. Check for syntax errors.

FUZZYSTUDIO™ 4.1

58

Unexpected string at the end of the rule
A not allowed string of characters has been found at the end of rule. Check for syntax er-
rors or if the /* character for starting a comment is missing.

“value” is out of defined Universe of Discourse
The specified value for consequent is not in the specified range of the output variable.

Importing Fuzzy Systems

The Importer is a tool that allows to import fuzzy systems generated by the fuzzy software
tools produced by STMicroelectronics : A.F.M. (Adaptive Fuzzy Modeler) for the automatic
generation of the fuzzy models by starting from the input/output patterns and
FUZZYSTUDIO™2, the development system for the programming of W.A.R.P. 2.0 proces-
sor.

The fuzzy systems are described in Fu.L.L. (Fuzzy Logic Language) that is a descriptive
language of the fuzzy systems allowing to exchange data between the various
STMicrolectronics Fuzzy Logic software tools.

To import a fuzzy system in the project:

1. Insert an “Import From File” block selecting it from the Blocks editor toolbar; you act in the
same way as for the other blocks.

2. When you insert the block in the client area, the standard Open dialog box appears allow-
ing you to select the file .ful containing the description of the fuzzy system to be imported.

3. Select the file.

4. Press OK button. The Output window opens showing the success message or eventual
error messages.

6. Complete the fuzzy system definition with the fuzzy variables initialization and storing.
Now the imported fuzzy system has the same characteristics of a normal fuzzy system and
can be freely modified and inserted in the block diagram.

A fuzzy system in Fu.L.L., besides being generated automatically by above tools, can also
be generated by using a normal text editor. For further information on the F.u.L.L. syntax
and semantics refer to Appendix E. - F.U.L.L. - Fuzzy Logic Language.

59

7 - ARITHMETIC BLOCK

The Arithmetic Block allows to carry out the arithmetic and logic instructions of the device.
Double clicking over the Arithmetic Block icon, the related editor opens. It is a free text editor
where you can specify the instructions by means of a simple language, which is character-
ized by part of the instructions set and the syntax of the ‘C’ language. These instructions
are translated during the compilation directly in FSCODE language, as the syntax is the
same in the two representations.

In this chapter you will learn to:

• use the Arithmetic Block editor

• the instructions set syntax

• write the program lines

Arithmetic Block Editor Window

This section provides an overview of the major elements of the Arithmetic Block Editor win-
dow such as menus and status bar.

Fig. 7.1 - Arithmetic Block Editor

ARITHMETIC

BLOCK

FUZZYSTUDIO™ 4.1

60

Arithmetic Block Editor menus
The following menu items are available when the Arithmetic Block is open in foreground:

File Contains commands to create, open, close, save and print window contents
and to visualize the project’s information.

Edit Provides standard editing and Find & Replace commands.

View Contains commands to hide/show toolbars, status bar, Project and Output
windows, to navigate along the error messages and to change the Fonts.

Tools Contains commands to run Debugger, Compiler or Programmer tools.

Window Contains commands related to window management.

Help Contains help commands.

Arithmetic Block Editor window status bar
The Status Bar displayed at the bottom of the Blocks Editor provides a brief description of
the toolbar command currently pointed by the mouse cursor. In addition, on the right side,
you can see the coordinates of the current cursor position.

Fig.7.2 - Arithmetic Blocks Editor status bar

Arithmetic Block Editor

The Arithmetic Block Editor is a normal text editor, like for example the Notepad, that allows
you to write the instructions. The editor supplies you the standard editing commands such
as:

• COPY

• CUT

• PASTE

• UNDO

• DELETE

• SELECT ALL

You can select these commands from the EDIT menu or from the pop-up menu opened
by right clicking over the client-area or from the Main Window toolbar.

In addition the editor supplies the following standard commands:

• FIND

• FIND NEXT

• REPLACE

You can select these commands from the EDIT menu. Moreover you can change the
fonts used for the text:

1. Select the FONT command from the VIEW menu

2. Select the desired font, font style and color and click O.K.

7 - ARITHMETIC BLOCK

61

Arithmetic Block Instructions

The Arithmetic Block Instructions set is a subset of the ‘C’ language. In addition, some li-
brary functions suited to work with the microcontroller have been implemented. The Arith-
metic Block instructions can be grouped as follows:

Assignment and mathematical operators:

= - + += -= ++ -- * / %

Logic operators:

& | ~ ^

Control structures and related statements:

if for while goto break continue

Logical functions for conditional expressions:

IsBitSet IsBitReset IsOverflow IsUnderflow DeviceStatus

Functions for bit manipulation:

BitSet BitReset BitNot << >>

Functions for peripherals and interrupts management:

DeviceSet IrqEnable IrqDisable IrqReset IrqEnableMask IrqPriority

Type conversion operators

.High .low

Writing instructions take in account the following rules:

• instructions must end with a semicolon

• instructions cannot have more than one operator (two operands)

• parentheses are not used in arithmetic instructions

• comment lines are allowed preceded, as in ‘C’ language, by the characters // or, if the com-
ment is expressed in several lines, by the characters /* and ended with */.

• the allowed operands are the Global Variables and the Predefined Variables, constants and
numeric values

• the keywords must be expressed in lower case

• for other remarks on writing the instruction, refer to the ‘C’ language grammar rules.

FUZZYSTUDIO™ 4.1

62

Global Variables Types and Cast

The instructions operate on the Global Variables, defined by the user with the apposite tool
(see chap. 4: Initial Setting). In addition they operate on the Predefined Variable. You can
find the Predefined Variables list for each device of the ST52 family in the Appendix A.

The Global Variables have a type associate; some of this types allow to use signed vari-
ables or 16-bits width variables. The available variable types are the following:

BYTE: 8-bit variables without sign, range [0 ,255]
S_BYTE: 8-bit signed variables, range [-128 , 127]
WORD: 16-bit variables without sign, range [0 , 65535]
S_WORD: 16-bit signed variables, range [-32768 , 32767]

Each 16-bit variable uses a couple of memory location to manage the values. The Com-
piler automatically generates the necessary instructions for managing the operation
with the couple of bytes, because the devices of the ST52 family support only byte opera-
tions.

Signed values are managed by the Compiler adding a suited value to the logical one, in
order to get unsigned values to be stored in the memory locations. So, to store SBYTE
type variables, the value 128 is added to the logical value: -128 is stored as 0, 0 as 128
and 127 as 255. In the same way, to store S_WORD type variables, the value 32768 is
added to the logical value. These operations are equivalent to set the MSB of the mem-
ory locations containing the variable value. Anyway, these operations are automatically
performed by the Compiler, in a transparent way for the user.
Note: Predefined Variables are considered as BYTE type variables.
The Compiler manages all the conversion of type either in the casting or in the arithmetic op-
eration between variables of different type. For example, the assignation of a variable to an-
other one of different type is managed as follows: suppose that Var1 is S_BYTE type and
Var2 is BYTE type and contains the value 100, then the instruction:

Var1 = Var2;

assigns logically the value 100 to the Var1 variable and the corresponding memory location
will contain the value 228 (100 + 128).

If the variable Var2 value is 200, the instruction causes the memory location related to the
Var1 variable to store the value 72 (200 +128 – 256), that logically means –56, and the Carry
flag to be set. This case can be easily be managed with the function IsOverflow() put in a
conditional construct just after the assign instruction; the functions returns true if the carry
flag has been set (see later in this paragraph for further information on the IsOverflow func-
tion).

When operation between different types are performed, the transformation is automatically
performed as follows: suppose to have the previously described Var1 and Var2 and another
variable Var3 of S_BYTE type. The instruction:

Var3 = Var1 + Var2;

is managed automatically by a Compiler macro making the conversion of the operand. to
perform the sum between values of the same type of the destination variable type.

The cast between types of different length is performed similarly by an assignment instruc-
tion. For example it is possible to copy the BYTE value of Var2 to the variable Word1 of type
WORD by the instruction:

Word1 = Var1;

7 - ARITHMETIC BLOCK

63

The viceversa is also possible but if Word1 contains a value greater of 255, the instruction
return an overflow and the Var1 is loaded with the less significant byte of the variable
Word1.

In some case it is necessary to copy the value contained in a 8-bit variable in the lower or the
higher byte of a 16-bit variable. Vice versa it may be useful to store the higher or the lower
part of a 16-bit variable in a 8 bit variable. For these reasons, the following syntax is sup-
plied:

Var1.high = Var2;
Var1.low =Var2;
Var2 = Var1.high;
Var2 = Var1.low;
where:
Var1 is a 16-bit type variable
Var2 is an 8-bit type variable

Mathematical instructions
The supplied mathematical instructions are the sum, subtraction, multiplication, division
and module. It is allowed to specify only one operator in each instruction. The operators are
the following:

Var = op1 + op2; sum between the two operands op1 and op2
Var += op; equivalent to Var = Var + op;
Var = op1 - op2; difference between the two operands op1 and op2
Var -= op; equivalent to Var = Var - op;
Var = -op; assign to Var the operand op with the sign changed
Var++; increments the variable
Var - -; decrements the variable
Var = op1 * op2; multiplication between the two operands op1 and op2
Var = op1 / op2; division between the two operands op1 and op2
Var = op1 % op2; remainder of the division between the two operands op1 and op2

Note: The operands can be variables or constants. The allowed constants range depends
on the destination variable’s type.
It is not possible use variables of different size as operands; for example it is not possible to
sum a WORD type variable with a BYTE type variable. You should transform one of the two
variables, assigning it to a variable of the same type as the other variable, and perform the
operation with the new variable.

The unary operator (-) for changing the variables value’s sign, must be used with a signed
type destination variable.

In multiplication instructions, the destination variable must be WORD or SWORD type. The
operands must be BYTE or SBYTE type. If one of the two operands is SBYTE type, the des-
tination variable must be of SWORD type.

In division and module instructions, the destination and operands must be unsigned type
variables.

FUZZYSTUDIO™ 4.1

64

Logic instructions
The supplied logical instructions are the AND, OR, XOR and NOT. It is allowed to specify
only one operator in each instruction. The operators are the following:

Var = op1 & op2; computes the AND between the two operands op1 and op2
Var &= op; equivalent to Var = Var & op
Var = op1 | op2; computes the OR between the two operands op1 and op2
Var |= op; equivalent to Var = Var | op
Var = op1 ^ op2; computes the XOR between the two operands op1 and op2
Var ^= op; equivalent to Var = Var ^ op
Var = ~op; computes the NOT of the operand op

Note: The operands can be variables or constants. Only unsigned variable types can be
used with the logic instructions.

Control Structures
The control structures allow to modify the logic flow of the program within the Arithmetic
Block. The structures considered from the ‘C’ language instruction set are IF, WHILE and
FOR.

The IF statement controls conditional branching. The body of an IF statement is executed if
the value of the expression specified after the IF keyword is true (nonzero). The syntax for
the IF statement has two forms:

• if (expression) statement

• if (expression) statement else statement

In the first form of the syntax, if expression is true (nonzero), statement is executed. If ex-
pression is false, statement is ignored. In the second form of syntax, which uses ELSE, the
second statement is executed if expression is false. With both forms, control then passes
from the if statement to the next statement in the program unless one of the statements con-
tains a GOTO instruction (see below).
The statements are composed by a single instruction or several instruction lines enclosed
between braces ({}). The expressions are composed by variables, constants, relational op-
erators and logic operators; they return a TRUE (or nonzero) of FALSE (or zero).
The allowed relational operators are the following:

• == equality
• != inequality
• > greater than
• < less than
• >= greater or equal to
• <= less or equal to

The allowed logical operators are the following:
• && AND
• || OR
• ! NOT

The expressions use the variables, constants and operators following the standard ‘C’
syntax. Refer to any ANSI ‘C’ language reference manual for further information about
the conditional expression syntax.

In addition, some library function, supplied by FUZZYSTUDIO™4.1 Compiler, can be
used in the conditional expressions (see next paragraph).

7 - ARITHMETIC BLOCK

65

Inside the body of the IF construct, it is often used the instruction GOTO to pass the control
to another part of the program. The syntax of the GOTO instruction is the following:

goto label

where the label must be defined inside the block because its scope is inside the block. The
label name must be followed by a colon (:) character.

The WHILE statement lets you repeat a statement until a specified expression becomes
false.

The syntax is the following:

while (expression) statement

• The expression is a conditional expression as the ones described for the IF statement.

• The expression is evaluated.

• If expression is initially false, the body of the while statement is never executed, and con-
trol passes from the while statement to the next statement in the program.

• If expression is true (nonzero), the body of the statement is executed and the process is
repeated.

The statement is composed by a single instruction or several instruction lines enclosed be-
tween braces ({}). The WHILE statement can also terminate when a BREAK or GOTO within
the statement body is executed. Use the CONTINUE statement to terminate an iteration
without exiting the while loop. The CONTINUE statement passes control to the next itera-
tion of the FOR statement.

Similarly to the WHILE, the FOR statement allows you to repeat a statement until a termina-
tion condition becomes FALSE (zero). In addition an expression to initialize an index and an
expression to increment such index are supplied. The syntax is the following:

for (init_statement ; conditional_expression ; expression) statement ;
The init_statement and the expression are assignment instructions or increment and decre-
ment instructions or procedure calls.

The conditional_expression is a conditional expression as the ones described for the IF
statement.

The statement is composed by a single instruction or several instruction lines enclosed be-
tween brackets ({}).

The FOR statement can also terminate when a BREAK or GOTO within the statement body
is executed. Use the CONTINUE statement to terminate an iteration without exiting the
while loop. The CONTINUE statement passes control to the next iteration of the FOR state-
ment.

FUZZYSTUDIO™ 4.1

66

Logical functions for conditional expressions
To make easy working with the microcontroller, some library functions to be included in the
conditional expressions are supplied within the Compiler. They allow to inspect the status of
the single bits, to manage overflow and underflow and to manage some information coming
from the peripherals. The functions return TRUE or FALSE according to the specified argu-
ments. The available functions are the following:

IsBitSet(bit,var) returns true if the bit No. bit of the variable var is set (1)

IsBitReset(bit,var) returns true if the bit No. bit of the variable var is reset (0)

IsOverflow () returns true if last arithmetic instructions caused an overflow

IsUnderflow() returns true if last arithmetic instructions caused an under-
flow

DeviceStatus (periph, param)

returns true if the event in the peripheral periph, specified by
the parameter param, occurs. The list of the key to specify
the arguments periph and param depends on the target de-
vice. You can find this list for each device in the Appendix A in
this manual

Functions for Peripherals and Interrupts Management
In order to manage the peripherals and interrupts with the Arithmetic Block instructions,
some library functions are supplied within the Compiler. They allow to enable or disable the
peripherals and the interrupts and execute other actions related to their management. The
available functions are the following:

The functions parameters depends on the selected target. See Appendix A to get details
about the implementation of the functions for each target device.

Note: The same actions can be programmed using the Peripherals Setting blocks and the
Interrupts related blocks.

DeviceSet(periph, param,…) allows to enable or disable and manage the peripherals

IrqEnable() enables globally the interrupts (only the not-masked in-
terrupt are enabled)

IrqDisable() disables globally the interrupts
IrqReset(int1, int2,.…) resets the specified pending interrupts

IrqEnableMask(int1, int2,…) enables selectively the interrupt sources and sets the ex-
ternal interrupt polarity (excluding ST52x420/420Gx)

IrqPriority(int1, int2,…) establishes the interrupts priority order

7 - ARITHMETIC BLOCK

67

Functions for bit manipulation
The devices of the ST52 family do not support instructions for bit manipulations. Anyway,
these can be performed using other device instructions. The Compiler supplies the func-
tions that implement these operations:

The following syntax is used to perform shift operations:

Var1 = Var2 << op; left shift
Var1 = Var2 >> op; right shift
Var1 and Var2 are unsigned 8 or 16-bit variables
op is a byte type variable or a constant that indicates the number of times to perform the shift.

BitSet(bit , var) sets the bit No. bit of the variable var to 1

BitReset(bit, var) resets the bit No. bit of the variable var to 0

BitNot(bit , var) complements the bit No. bit of the variable var

FUZZYSTUDIO™ 4.1

68

Tables and Constants

Tables values and constants can be used in the arithmetic instruction as read-only vari-
ables: they cannot be specified as destination. The tables and constants are defined with
the Tables window editor accessed through the Project Window (see Chapter 4).

Tables and constants consider the same convention for types and cast as described for the
variables. The tables elements are specified using the indexes enclosed between square
brackets. The option base is always 0. They are practically considered as vectors of
constants.

Examples:

Var0 = Table0[23] ;

Var1 = Table2[2] – Table1[0];

Var2 = Constant0 + Table0[1];

69

8 - ASSEMBLER BLOCK

The Assembler Block allows to program routines at low level. Some parts of a program
could need fast response time that can be obtained only with an optimized code. The use of
the Assembler instructions is a better solution in these cases. The Assembler Block uses
the Assembler instructions of the ST52 family, with some exceptions such as the fuzzy in-
structions.

In this chapter you will learn:

• to use the Assembler Block editor

• the instructions set syntax

• write the program lines

Assembler Block Editor Window

This section provides an overview of the major elements of the Arithmetic Block Editor win-
dow such as menus, toolbar and status bar.

Fig. 8.1 - Assembler Block Editor

ASSEMBLER

BLOCK

FUZZYSTUDIO™ 4.1

70

Assembler Block Editor menus

The following menu items are available when the Assembler Block is open in foreground:

File Contains commands to create, open, close, save and print window contents
and to visualize the project’s information.

Edit Provides standard editing, Find & Replace commands.

View Contains commands to hide/show toolbars, status bar, Project and Output
windows, to navigate along the error messages and to change the Font.

Tools Contains commands to run Debugger, Compiler or Programmer tools.

Window Contains commands related to window management.

Help Contains help commands.

Assembler Block Editor window status bar

The status bar displayed at the bottom of the Assembler Blocks Editor provides the coordi-
nates of the current cursor position.

Fig. 8.2 - Assembler Block Editor status bar

Assembler Block Editor

Such as the Arithmetic Block, the Assembler Block Editor is a normal text editor, like for ex-
ample the Notepad, that allows you to write the instructions. The editor supplies you the
standard editing commands such as:

• COPY

• CUT

• PASTE

• UNDO

• DELETE

• SELECT ALL

You can select these commands from the EDIT menu or from the pop-up menu opened
by right clicking over the client-area or from the Main Window toolbar.

In addition the editor supplies the following standard commands:

• FIND

• FIND NEXT

• REPLACE

You can select these commands from the EDIT menu.

Moreover you can change the fonts used for the text:

• Select the FONT command from the VIEW menu

• Select the desired font, font style and color and click O.K.

8 - ASSEMBLER BLOCK

71

Assembler Block Instructions

The Assembler instructions set is a subset of the one supplied for the ST52 family. The
Fuzzy Logic instructions and few others are excluded because they may generate some
overlapped code with the one generated by the Compiler. The list of the available instruc-
tions is showed in the following tables:

LOAD INSTRUCTIONS

ldcr REG_CONFxx , var loads the configuration register xx with the variable con-
tents

ldpr pred, var loads the peripheral register with the variable contents

ldrc var, const loads the variable with the specified constant

ldri var, pred loads the variable with the peripheral register contents

ldrr var, var loads the variable with another variable contents

ARITHMETIC INSTRUCTIONS

add var, var sum between two variables

addo var, var sum with offset between two variables

and var, var bitwise AND between two variables

asl var arithmetic shift left of the variable

asr var arithmetic shift right of the variable

dec var decrement the variable

div word, var division between a word type variable and a byte type vari-
able

inc var increments the variable

mult word, var multiplication between the low part of the word type
variable and a byte type variable

not var bitwise NOT of the variable

or var, var bitwise OR between two variables

sub var, var subtraction between two variables

subo var, var subtraction with offset between two variables

mirror var mirroring of the variable contents

FUZZYSTUDIO™ 4.1

72

JUMP INSTRUCTIONS

call label call user procedure

jp label absolute jump

jpc label jumps if the carry flag is set

jpnc label jumps if the carry flag is reset

jpns label jumps if the sign flag is reset

jpnz label jumps if the zero flag is reset

jps label jumps if the sign flag is set

jpz label jumps if the zero flag is set

INTERRUPT RELATED INSTRUCTIONS

halt puts the device in halt state

mdgi disables the interrupt (used by the Compiler macro)

megi enables the interrupt (used by the Compiler macro)

reti returns from interrupt

rint n resets interrupt number n

udgi disables the interrupt (used by the user)

uegi enables the interrupt (used by the user)

waiti waits for interrupt

MISCELLANEOUS

nop no operation

wdtrfr refresh the Watchdog counter

wdtslp stop the Watchdog

To get more information about Assembler instructions see Appendix C in this manual.

Using the Assembler instructions in the Assembler Block you should follow these indica-
tions:

• Memory locations are addressed by using Global and Predefined Variables: it is not allowed
to specify the direct address.

• The Configuration Registers are addressed by using the REG_CONFxx Predefined
Variables.

• The data are sent to the peripheral by using the appropriate writable Predefined Variable
with the ldpr instruction.

• Data from peripheral are stored in the ram by using the appropriate Predefined Variable with
the ldri instruction.

8 - ASSEMBLER BLOCK

73

• Only byte type variables can be used with the Assembler instructions, with the exception of
the mult and the div instructions.

• The mult instruction in the Assembler Block is different from the one in the device instruc-
tion set, because a word type variable must be specified as destination register. Only the
less significative byte of the variable is considered as first operand of the multiplication. The
result is put on the whole word type variable.

• The first operand of the div instruction must be a word type variable. The resulting quotient
is put in the less significative byte of the word type variable, the remainder in the most signifi-
cative one.

• The jump instruction must specify a label defined inside the same Assembler Block.

• The call instruction must specify an existing user procedure name defined within the Project
Window.

FUZZYSTUDIO™ 4.1

74

75

9 - CONDITIONAL BLOCK

The Conditional Block allows to modify the logic flow of the program according to a specified
condition operating on the Global and Predefined Variables. The conditional block is con-
nected to one input and two output links, tagged with YES and NO, which are connected re-
spectively to the part of the program to be executed if the condition is TRUE and to the part
to be executed if the condition is FALSE.

In this chapter you will learn how to:

• use the Conditional Block editor

• write the conditions

Conditional Block Editor

The Conditional Block Editor is a normal text editor, like for example the Notepad, that al-
lows you to write the instructions. The editor provides you the standard editing commands
such as:

• COPY

• CUT

• PASTE

• DELETE

• UNDO

You can select these commands from the EDIT menu or from the pop-up menu opened
by right clicking over the client-area or from the Main Window toolbar.

Fig. 9.1 - Conditional Block Editor

CONDITIONAL

BLOCK

FUZZYSTUDIO™ 4.1

76

Conditional Block Grammar

The Conditional Block’s Editor allows to write the condition that determines the logic flow of
the program. The condition can be written as for the Arithmetic Block’s instructions, using
the same grammar.

The Conditional Block instruction is equivalent to the conditional construct IF. The
keywords IF is omitted, so you have to specify only the condition. If the expression repre-
senting the condition is true (nonzero), the control of the program is passed to the block con-
nected to the YES link. If expression is false, the control passes to the block connected to
the NO link.

The expressions are composed by variables, constants, relational operators and logic oper-
ators; they return a TRUE (or nonzero) of FALSE (or zero).

The allowed relational operators are the following:

• == equality

• != inequality

• > greater than

• < less than

• >= greater or equal to

• <= less or equal to

The allowed logical operators are the following:

• && AND

• || OR

• ! NOT

The expressions use the variables, constants and operators following the standard ‘C’ syn-
tax. Refer to any ANSI ‘C’ language reference manual for further information about the con-
ditional expression syntax.

In addition, some library functions, supplied by FUZZYSTUDIO™4.1 Compiler, can be used
in conditional expressions. They allow to inspect the status of the single bits, to manage
overflow and underflow and to manage some information coming from the peripherals. The
functions return TRUE or FALSE according to the specified arguments. The available func-
tions are the following:

IsBitSet(bit,var); returns true if the bit No. bit of the variable var is set (1)

IsBitReset(bit, var); returns true if the bit No. bit of the variable var is reset (0)

IsOverflow(); returns true if last arithmetic instructions caused an overflow

IsUnderflow(); returns true if last arithmetic instructions caused an under-
flow

DeviceStatus(periph ,param);

returns true if the event in the peripheral periph, specified by
the parameter param, occurs. The list of the key to specify
the arguments periph and param depends on the target de-
vice. You can find this list for each device in the Appendix A in
this manual.

77

10 - BLOCKS FOR PERIPHERALS MANAGEMENT

FUZZYSTUDIO™4.1 Blocks Editor supplies the blocks to easily interact with the peripher-
als. To exchange data with the peripherals you can use the Send and Receive Blocks. The
Peripherals Blocks are used to manage the peripherals operations. There is one Periph-
erals Block for each peripheral present on the target device. See Appendix A to learn about
the Peripherals Blocks supplied for each target device.

In this chapter you will learn how to use:

• the Send Block

• the Receive Block

• the Peripherals Block

Send and Receive Block

The Send Block is used to transfer data to a specified peripheral as for example, the counter
value of the Timer. The Receive Block is used to read data from a peripheral such as for ex-
ample, the values from the A/D Converter channels. To do that you have to specify one
Global or Predefined variable and one peripheral device.

The peripherals are identified by the Predefined Variables: in the Send Block you can find
the write only or the write/read Predefined Variables as destination; in the Receive Block
you can find the read only or the read/write Predefined Variables as source.

Send Block

The Send Block editor is composed by:

• the tree-list containing the available Global and Predefined Variables, Tables and constants
to be used as source.

• the drop-down list box containing the available Predefined Variables representing the desti-
nation devices. Read-only Predefined Variables are not included in the list.

Operate as follows:

1. Select the source variable or the Table element from the tree-list

2. Select the destination Predefined Variable from the drop-down list

3. Click OK button

The value contained in the source variable is sent to the peripheral device buffer identi-
fied by the selected Predefined Variable.

FUZZYSTUDIO™ 4.1

78

Receive Block

The Receive Block editor is composed by:

• the tree-list containing the available Global and Predefined Variables to be used as destina-
tion.

• the drop-down list box containing the available Predefined Variables representing the
source devices. Write-only Predefined Variables are not included in the list.

Operate as follows:

1. Select the destination variable from the tree-list.

Fig. 10.1 - Send Block Editor

Fig. 10. 2 - Receive Block Editor

2. Select the source Predefined Variable from the drop-down list.

3. Click OK button.

The value read from the peripheral device buffer, identified by the selected Predefined
variables, is stored in the selected destination variable.

10 - BLOCKS FOR PERIPHERALS MANAGEMENT

79

Peripherals Blocks

The Peripherals Block is a group of blocks used to operate run-time on the peripherals. It is
used mainly to start or stop the peripherals; in addition, some peripherals’ configurations
can be changed run-time.

The number and the type of Peripherals Blocks depend on the peripherals included in the
target device. The related editors’ environments are suited to the peripheral type.
Check-boxes, list-boxes, and other controls allow you to program easily the action to be ex-
ecuted by the peripheral. The Peripherals Blocks for each target device are described in the
Appendix A of this manual.

Fig. 10.3 Peripherals Block editor example

Note: Each Peripherals Block has its own icon representing the considered peripheral;
also the default label name recalls the peripheral type.

FUZZYSTUDIO™ 4.1

80

81

11 - INTERRUPTS RELATED BLOCKS

In this chapter, the groups of blocks used to manage the interrupts are described. They al-
low to perform the following operations:

• Enable globally the interrupts

• Disable globally the interrupts

• Reset the pending interrupts

• Enable/disable (mask) the interrupts

• Set the interrupts priority levels

The associated editors are similar in each target device, with the difference that the in-
terrupt sources to be considered change in each device. See Appendix A to know the in-
terrupt sources included in each target device.

In this chapter you will learn to use:

• the Interrupts Enable Block

• the Interrupts Disable Block

• the Interrupts Reset Block

• the Interrupts Mask Block

• the Interrupts Priority Block

Interrupts Enable Block

The Interrupts Enable block is used to globally enable the interrupts. Inserting this block the
not-masked interrupts can be serviced. This block does not modify the mask of each inter-
rupt source, so the disabled interrupt sources will be not be acknowledged remaining pend-
ing.

This block has not an associated editor because no specification is needed: the related ac-
tion is completely specified just inserting the block in the diagram.

Note: you do not need to insert the Interrupts Enable Block at the beginning of the program
because the interrupts are globally enabled by default. You have to use this block after us-
ing the Interrupts Disable Block, if you want to enable the interrupts again.

The Interrupts Enable Block corresponds to the insertion of the UEGI Assembler instruc-
tion.
Warning: During the execution of FUZZYSTUDIO™4.1 instructions or single-action
blocks, the interrupts are disabled by using the apposite Assembler instruction
MDGI. So the not-masked interrupts cannot be serviced, until the MEGI instruction
has been specified at the end of the high-level instruction execution, although the In-
terrupt Enable Block has been inserted. You can avoid this by using the Folder block
properly configured (see chapter 12).

FUZZYSTUDIO™ 4.1

82

Interrupts Disable Block

The Interrupts Disable Block is used to disable globally the interrupts. Inserting this block
the interrupts cannot be serviced until an Interrupts Enable Block is executed. This block
does not modify the mask of each interrupt source so that the not-masked interrupts can be
serviced after the execution of the Enable Block.

This block has not associated editor because no specification is needed: the related action
is completely specified just inserting the block in the diagram.

The Interrupts Disable Block corresponds to the insertion of the UDGI Assembler instruc-
tion.

Interrupts Reset Block

If an interrupt request occurs when the interrupt is masked, it is not serviced and remains
pending; after enabling the interrupt, it is immediately serviced. This may be an unwanted
event: for this reason it is supplied the way to cancel the pending interrupt requests before
enable them.

The Interrupts Reset Block allows you to select the pending interrupt(s) to be reset. The edi-
tor is composed by a check list-box which items are the available interrupt sources of the se-
lected target. See Appendix A to know the list of the available interrupts for each device.

To reset the pending interrupt request(s):

1. Check the interrupt source(s) in the check-list by clicking the corresponding
check-box(es)

2. Click OK button

Fig. 11. 1 - Interrupt Reset Block editor

11 - INTERRUPTS RELATED BLOCKS

83

Interrupts Mask Block

The Interrupt Mask Block is used to enable or disable the interrupt sources selectively.
When disabled (masked), the interrupt source cannot be acknowledged remaining pending;
it will be serviced as soon as it is enabled.

The editor is composed by a check list-box showing the available interrupt sources of the
selected target. See Appendix A to know the list of the available interrupts for each device.

To enable interrupt(s):

1. Check the interrupt source(s) in the check-list by clicking the corresponding
check-box(es).

2. Click OK button.

To disable interrupt(s)

1. Leave unchecked the interrupt items to be disabled.

2. Click OK button.

Note: When the check-boxes are checked the interrupts are not masked, when unchecked
they are masked.

Fig. 11.2 - Interrupt Mask Block editor

FUZZYSTUDIO™ 4.1

84

Interrupts Priority Block

When more interrupts occur simultaneously or when an interrupt occurs during the execu-
tion of an interrupt service routine, the decision about which interrupt has to be serviced is
taken according to the priority level of the active interrupts.

FUZZYSTUDIO™4.1 Blocks Editor supplies the Interrupts Priority Block to establish the
priority order. The editor is composed by a list-box which shows the available interrupt
sources of the selected target, listed with the currently set priority order. See Appendix A to
know the list of the available interrupts for each device.

To change the priority level of an interrupt source you have to change its position in the list:

1. Select the interrupt source by clicking on it in the list

2. Keeping the mouse button down, drag the item to the desired position

3. Change the position of the other interrupts which you want to modify the priority level

4. Click OK button
Note: The ST52 family devices may have interrupt(s) with fixed priority: in most cases it is
the External Interrupt that has top level fixed priority. The relative item(s) in the Interrupt Pri-
ority Block list cannot be moved, keeping always the position related to its fixed priority level
(usually the top of the list).
Warning: Due to the architecture of the ST52x420, when using this device as target, it
is recommended to use the priority block only at the beginning of the program, before
starting any interrupt source because, in some cases, unwanted interrupts may be
serviced.

Fig. 10.3 - Interrupt Priority Block editor

85

12 - OTHER BLOCKS

In this chapter, the remaining blocks not yet presented are described. These blocks are not
less important or less used, but they are grouped in the present chapter because they are
used for particular and special functions. They are supplied to implement some important
features of the microcontroller or to improve the readability of the block diagram. Some of
them have not an associated editor or do not generate any instruction.

In this chapter you will learn to use:

• Call Block

• Wait Block

• Halt Block

• Restart and Return Blocks

• IRQ and RETI Blocks

• Folder and Exit Blocks

Call Block

The Call Block is used to implement the user’s procedures calls. We have already described
how to implement procedures in the Chapter 3 with the Project Window tree-view. The Call
Block allows you to use these procedures inside the program.

The procedures are part of program that can be recalled several times in a different part of
the program. The procedures allow to save memory space and to make the program more
compact and readable. There are not parameters to be specified in the procedure calls and
there are not local variables inside the procedure scope: data are passed to the procedures
by means of the Global Variables. The procedures are formally subroutines.

The Call Block editor allows to specify the user procedures to be called. It is composed by a
list-box with all the available user procedures and by a text-box indicating the previously se-
lected procedure name (if not selected yet it is specified “none”).

To select the procedure to call:

1. Click on the procedure name in the list-box

2. Click OK button or double-click on the procedure name

The Call Block icon is modified showing a tag with the selected procedure name. You can
hide this tag selecting the command “Hide Procedure Label” from the pop-up menu
opened right-clicking the block’s icon.

Note: Deleting a procedure, you are requested for confirmation twice: the second time you
are informed about the Call Blocks that are using the procedure, if any. These blocks are not
deleted but they loose the association with the old procedure and are set to “none”.

CALL

FUZZYSTUDIO™ 4.1

86

Wait and Halt Blocks

These blocks are used to put the device in the Wait or Halt state. These blocks have not as-
sociated editor because no specification is needed: the related action is completely speci-
fied just inserting the block in the diagram.

The Wait Block stops the execution of the programs and the CPU clock until the occurrence
of an enabled interrupt. The peripherals and the oscillator remain active. The Wait Block
corresponds to the WAIT Assembler instruction.
Warning: it is possible to exit from the Wait state only if the interrupt is serviced. If the
request is not serviced because the interrupt is not enabled or the interrupts are glob-
ally disabled or the Wait block has been inserted in a too high priority interrupt
routine, the processor will never exit from the Wait state. Example: if you use the Wait
Block in the top level interrupt service routine you will never exit from the Wait state
until a reset occurs.

The Halt block stops the program execution, the CPU clock, the peripherals and the oscilla-
tor in order to have the lowest current consumption. Only the External Interrupt request can
wake-up the microcontroller from the Halt state. If the External Interrupt is enabled then the
related service routine is executed; otherwise the instruction after the Halt is executed. The
Halt Block corresponds to the HALT Assembler instruction.
Note: If the Watchdog is enabled the Halt instruction is skipped and the Halt state is not en-
tered.

Fig. 12. 1 - Call Block Editor

WAIT

HALT

12 - OTHER BLOCKS

87

Restart and Return Blocks

The Restart Block is used to implement a closed loop in the program or to restart particular
conditions without resetting the device. Actually the Restart Block determines an absolute
jump to the beginning of the Main Program.

The Restart Block has not associated editor because no specification is needed: the related
action is completely specified just inserting the block in the diagram.
Note: the Restart Block jumps to the beginning of the program without reconfiguring the pe-
ripherals.

When using a Procedure’s Blocks Editor, the Restart Block is replaced by the Return Block.
It performs the Return from the Procedure, passing the control to the instruction following
the Call Block that called the Procedure. Also the Return Block has not associated editor. It
corresponds to the RET Assembler instruction.
Note: You must insert at least one Return Block in each Procedure’s block diagram.

IRQ and RETI Blocks

When you are using the Block Editor in the interrupt service routines, the Start Block and the
Restart Block are replaced in the toolbar respectively by the IRQ Block and the RETI Block.

These blocks have not an associated editor: the related action is completely specified just
inserting the block in the diagram.

The IRQ Block states the beginning of the interrupt service routine; as the Start Block, the
IRQ block is inserted automatically and cannot be deleted. It can have only one output link
attached.
Note: The IRQ Block does not correspond to any instruction or functionality of the
microcontroller: it is used only to indicate the beginning of the block diagram.

The interrupt service routine is completed with one or more exit points inserted in the block
diagram by using the RETI block. This block determines the return from interrupt and the
passing of the control to the instruction next to the interrupted one. The RETI block corre-
sponds to the RETI Assembler instruction.

Fig. 12.2 - Interrupt Service Routine environment

RESTART

IRQ

RETI

RETURN

Note: You must insert at least one RETI Block in each interrupt service routine block dia-
gram that you are using in your program.

FUZZYSTUDIO™ 4.1

88

Folder Block and Exit Block

The Folder Block does not implement any microcontroller’s functionality: it is useful just to
organize better your block diagram, improving the program organization and readability.
Actually, the block-diagram may become very complex and tangled. The Folder Block al-
lows you to group some part of your program inside a sub-diagram contained inside the
Folder, without logically modifying the entire block-diagram, but just for viewing and organi-
zation purposes. In addition, it allows to specify some parts of the program that are to be
compiled in a special way.

The Folder Block can be inserted as the other blocks. Double clicking on the icon, the Folder
environment opens. It is a Block Diagram editor similar to the one of the Main Program, with
the difference that one or more exit points should be inserted at the end of the sub-diagram
by using the Exit Block.

The Exit Block does not implement any microcontroller’s functionality. It indicates the link of
the sub-diagram to be connected with the output link of the Folder Block. The Exit Block re-
places the Restart Block in the Folder’s Blocks Editor. The Folder’s input link is connected to
the Folder’s Start Block.

To operate with the Folders:

1. Insert the Folder Block (refer to Inserting Blocks paragraph in chapter 5)

2. Double-click on its icon to open the Folder

3. Design the block sub-diagram specifying the commands and end it with at least one Exit
block

Fig. 12.3 - Folder environment

FOLDER

EXIT

12 - OTHER BLOCKS

89

Folders with Compiler options

The Folder block allows also to group some parts of programs that should be compiled in a
special way. There are three types of Folders according with the settings: Safe, Locked and
Unlocked.

These compilation modality regards the introduction of the MDGI and MEGI Assembler in-
structions inside the generated code in order to prevent the Compiler macro from interrupt.

Actually to each high-level instruction corresponds a set of Assembler instruction i.e. a
macro. The macro uses temporary variables shared between all the macros and that con-
tains temporary values valid only during the macro execution. If an interrupt occurs during
the macro execution, these temporary values are lost and the macro cannot be completed
correctly.

For this reason, the macro starts with a MDGI instruction that disables the interrupt protect-
ing the macro, and ends with the MEGI Assembler instruction that enables the interrupts
again. This causes the increasing of program length and the lowering of the execution
speed.

Some parts of programs may do not need this features because the interrupts are not en-
abled or the macro can be interrupted without any problem. In this case, it is possible to use
the Locked or Unlocked Folders types.

The three types of folder work as follows:

Safe: it is the normal type of folder as described previously. The code is generated
as in the Main Program with the instruction MDGI and MEGI inserted at the
start and the end of each macro. This is the safest mode but it is the most
space and time consuming.

Locked: in this mode the interrupts are disabled only at the start and enabled at the
end of the Folder. So you are prevented by unwanted interrupts and the code
is optimized because the MEGI and MDGI are specified just one time in all
the Folders.

Unlocked: this is the less safe type because the MEGI and MDGI instructions are never
specified inside the Folder. Use this block if the interrupts are disabled or not
used or if the interrupt service routines do not use high-level instructions.

To set the Folder type act as follows:

1. Insert the Folder block as for the other blocks

2. Right-click over the block to open the pop-up menu

3. Select the SETTING PROPERTIES command: the Folder Type dialog-box opens

4. Choose the Folder type by clicking the corresponding radiobutton.

5. Click O.K. button.

Note: Be careful when using nested Folders with different compiler options: the code is
generated with the modality corresponding to the options set for the top-level folder (only
locked or unlocked type). The code related to the nested folders will be generated using that
modality, despite the option set.

LOCKED

UNLOCKED

FUZZYSTUDIO™ 4.1

90

Fig. 12.4 - Folder types dialog box

91

13 - COMPILER

After ending the program writing, you can generate the machine code to be loaded in the de-
vice’s memories by using the Compiler tool. The Compiler also generates other files used
by the FUZZYSTUDIO™4.1 tools.

The results of the compilation are showed in the Output Windows, which allows you to inter-
act easily with the program in case of compilation errors.

You can also customize the compilation operation by specifying the Compiler options, in or-
der to get the type of compilation you need for your project.

In this chapter you will learn to:

• Launch the Compiler

• Check for compilation errors

• Set the Compiler options

In addition, in this chapter you will find the list of the Compiler error messages.

Project Compilation

After setting the Compiler options if needed (see next paragraph), you can run the Compiler
and check for eventual errors.

To launch the compilation:

• select the COMPILER>RUN command from the TOOL menu
or

• click the apposite toolbar button in the Main window.

The Output Window opens showing the result of the compilation: the error messages
and warnings or the message of compilation success. You can access to the instruction

Fig. 13.1 - Output Window with compilation results

COMPILER

FUZZYSTUDIO™ 4.1

92

that caused an error by double-clicking on the error message in the Output Window. The
wrong instruction is put in foreground and highlighted.

You can navigate along the error messages by using the Next Error and Previous Error
commands:

To inspect the next error in the errors list:

• select NEXT ERROR command from the VIEW menu of the main window

or

• push F4 key

To inspect the previous error in the errors list:

• select PREVIOUS ERROR command from the VIEW menu of the main window

or

• push SHIFT+F4 key

Files generated during compilation

The Compiler generates some intermediate files before the final code. They are in the order:

• the script file describing the program in FSCODE language with extension .STC

• the corresponding assembler code file with the extension .ASM

• the file containing the information data for the Debugger with extension .DBIand DBX

• the machine code file with extension .BIN

The .STC file contains the description of the program in the FSCODE language. This is a
subset of the ‘C’ language that allows you to examine the program with a listing, without
graphical description. It is used in the Debugger to debug the program step-by-step in
which each step is a FSCODE language instruction.

The FSCODE file is used by the Compiler as source to generate the corresponding As-
sembler program. Also the assembler listing is used in the Debugger to follow the emula-
tion of the program.

The .DBI and .DBX files contain reserved data used by the Debugger to link the
high-level description with the low-level characteristics.

The .BIN code contains the data to be loaded in the device memory in binary format. This
file is used as source by the Programmer tool.

13 - COMPILER

93

Compiler Options

The Compiler Options allows you to customize the compilation phase. You can choose the
compilation mode with the overflow control, if you need it, or optimize the code excluding
the instructions for the interrupts control.

If you are using the functions IsOverflow() and IsUnderflow() inside your program, you must
use the compilation mode with the Overflow Control. Using this compilation mode some ad-
ditional code is added to some of the high-level instruction macros, in order to set properly
the carry (C) or the sign (S) flag of the microcontroller, so the functions IsOverflow() and
IsUnderflow() can check them correctly. The consequence is a less optimize code, due to
the additional instructions added to some instruction with different types of operands. No in-
structions are added when using operation between BYTE type only operands.

To choose the compilation with overflow/undeflow control check the command
COMPILE>OVER/UNDEFLOW CHECK from the menu TOOLS. To disable this compilation
modality uncheck the same command.
Note: If you are not using the IsOverfow() and IsUnderflow() function you are recommended
to compile in normal mode in order to get optimized code.

The other way to set compilation options is to use the Folder block in order to optimize the
generated code, excluding the instructions for the interrupt control MEGI and MDGI. You
can avoid the use of these Assembler instructions, added inside each high-level instruction
macro, in order to decrease the program length and increase the execution speed when the
interrupts are disabled. See Chapter 12 to get more information about the Folder block op-
tions.

Compiler Error Messages

In the following you can find the list of error messages and warnings that can occur during
the program compilation.

Compilation errors

«allowed only constant arguments»
The argument required in the IRQEnableMask () function must be constant. Check for typ-
ing errors.

«allowed only constant expression»
Only constant or constant expressions are allowed in the context.

«xxx already defined»
The name xxx was already defined in the program. Change the name.

«break instruction is misplaced»
The break instruction has been used in a not allowed context. See the instruction gram-
mar.

«cannot allocate an array of size 0»
An array of size 0 was declared. The constant expression used to allocate or declare an
array must be an integral type greater than zero.

FUZZYSTUDIO™ 4.1

94

«configuration register expected»
The specified instruction needs a configuration register as operand.

«constant expression out of range xxx»
The constant expression value is out of range [0, 255] for BYTE expression value or [-128,
127] for S_BYTE expression value or [0, 65535] for WORD type or [–32768, 32767] for
then S_WORD type.

«constant out of range»
The specified constant is out of range [0 , 255] for the BYTE type or [-128 , 127] for the
S_BYTE type.

«xxx yyy[zzz] contains too many elements for dynamic indexing»
The device does not support dynamic indexing with arrays larger than 256 elements.

«continue instruction is misplaced»
The continue instruction has been used in a not allowed context. See the instruction gram-
mar.

«“DeviceSet” requires only constant argument»
The argument required to the DeviseSet() function must be constant. Check for syntax er-
rors.

«“DeviceSet” syntax error»
A generic error has been found in the specified DeviceSet() function. Check for typing er-
rors.

«“DeviceSet” too few argument»
Few arguments than the required ones have been inserted into the function DeviceSet().
Check for syntax errors.

«“DeviceSet” wrong fifth parameter; ONCE or CONTINUOUS expected»
The fifth parameter in the DeviseSet() function used in the instruction to set the A/D con-
verter is wrong. Only the keywords ONCE and CONTINUOUS can be used.

«“DeviceSet” wrong fourth parameter; integer in the range [1..8] ex-
pected»

The fourth parameter in the DeviseSet() function used in the instruction to set the A/D
converter is wrong. Only integer number fro 0 to 8 can be used.

«“DeviceSet” wrong number of parameters»
The number of parameters specified in the function DeviceSet() is not correct. Check for
missing or exceeding parameters.

«“DeviceSet” wrong second parameter; expected START»
The second parameter in the DeviseSet() function used in the instruction to set AllTimer is
wrong. Only the keywords START can be used.

«“DeviceSet” wrong second parameter; RESTART or DISABLE ex-
pected»

The second parameter in the DeviseSet() function used in the instruction to set the
Watchdog is wrong. Only the keywords RESTART and DISABLE can be used.

13 - COMPILER

95

«“DeviceSet” wrong second parameter; SET or RESET expected»
The second parameter in the DeviseSet() function used in the instruction to set the Timer
is wrong. Only the keywords SET and RESET can be used.

«“DeviceSet” wrong second parameter; START or STOP expected»
The second parameter in the DeviseSet() function used in the instruction to set the A/D
converter is wrong. Only the keywords START and STOP can be used.

«“DeviceSet” wrong seventh parameter; DIVIDED or FULL expected»
The seventh parameter in the DeviseSet() function used in the instruction to set the A/D
converter is wrong. Only the keywords DIVIDED and FULL can be used.

«“DeviceSet” wrong sixth parameter; SINGLE or SEQUENCE expected»
The sixth parameter in the DeviseSet() function used in the instruction to set the A/D con-
verter is wrong. Only the keywords SINGLE and SEQUENCE can be used.

«“DeviceSet” wrong third parameter; SET or RESET expected»
The third parameter in the DeviseSet() function used in the instruction to set the A/D con-
verter is wrong. Only the keywords SET and RESET can be used.

«“DeviceStatus” requires only constant argument»
The argument required in the DeviseStatus function must be constant. Check for syntax
errors.

«“DeviceStatus” requires two parameters»
The DeviceStatus function has been specified with a number of parameters different to
the reqired ones.

«expression value xxx is out of range»
The expression value is out of range [0, 255] for BYTE expression value or [-128, 127] for
S_BYTE expression value or [0, 65535] for WORD type or [–32768, 32767] for then
S_WORD type.

«first argument must be a constant expression. »
The first argument is not a constant expression as required. Check for syntax errors

«first operand must be ‘WORD’ variable»
The first operand in DIV or MULT instruction must be a WORD type.

«xxx fuzzy variable already declared»
The fuzzy variable name xxx has been already defined. Change the fuzzy variable name.

«Fuzzy Rule syntax not supported»
The device cannot process the specified Fuzzy Rule. This occurs only with some particu-
lar rules having eight antecedent terms.

«incorrect use of vector xxx»
The xxx vector has not been used correctly. Check if the square brackets are missing or for
other syntactic ot typing errors.

«Index too big. Allowed 0-xxx»
An index out of the allowed range as been specified in the instruction. Check for typing er-
rors.

FUZZYSTUDIO™ 4.1

96

«input Fuzzy variable xxx not initialized in block yyy»
The input Fuzzy variable has not initialization variable specified as source in the Fuzzy
block yyy. Open the block and initialize the Fuzzy variable by selecting a Global or Prede-
fined variable.

«internal error»
Internal error occurred in FS4 Compiler. Please contact STMicroelectronics Fuzzy Logic
B.

«xxx interrupt identifier already used»
The name xxx, specified as interrupt identifier within the interrupt-related function, has
been specified twice in the function call.

«invalid character xxx»
The character xxx is a not valid character inside the source code.

«invalid crisp membership function»
The value specified as crisp membership function is out of the universe of discourse de-
fined for the variable it belongs to. This error normally does not occur: it is an Internal Er-
ror, please contact STMicroelectronics Fuzzy logic B.U.

«invalid device»
The specified device cannot be used with the DeviceStatus function.

«invalid function call “xxx”»
The specified function has been called in wrong way. Check for syntax errors.

«invalid number of arguments; required x arguments. »
The specified procedure requires x arguments. Check for syntax errors.

«xxx invalid parameter»
The parameter xxx specified in the function is not valid in the context. Check for typing er-
rors or for the instruction syntax.

«xxx invalid second parameter»
The second parameter in the DeviceStatus function is not valid.

«invalid setting for A/D converter. Check the peripheral configuration»
The setting specified with the DeviceSet() function to set the A/D Converter is not valid for
the current configuration of the peripheral. This may occur if you changed the device pins
configuration or the A/D configuration without modifying the already inserted peripherals
blocks related to the A/D converter.

«xxx is a constant»
xxx is a constant, but the specified function requires a variable. Check for syntax errors.

«xxx is a read only variable»
The variable xxx is read-only and cannot be specified before the assignation operator ‘=’

«xxx is a reserved word»
The name xxx used for label or variable name cannot be used because it is reserved.

13 - COMPILER

97

«xxx is a write-only variable»
The variable xxx is write-only and cannot be specified after the assignation operator ‘=’

«IsBitReset function requires two parameters»
Invalid number of parameters; IsBitReset function requires two parameters.

«IsBitSet function requires two parameters»
Invalid number of parameters; IsBitSet function requires two parameters.

«xxx is not a vector variable»
The name “xxx” has been used as vector variable. Check for syntax errors.

«IsOverFlow function requires no parameters»
Parameters have been specified with the function IsOverFlow but this function does not
require any parameter.

«xxx is read only»
The variable or table xxx is read-only and cannot be specified as left value in assignation
instructions.

«IsUnderFlow function requires no parameters»
Parameters have been specified with the function IsUnderFlow but this function does not
require any parameter.

«label xxx already defined»
The label name xxx has been already used in another part of the program. Change the la-
bel name.

«looped link after the block xxx»
The output link of the block xxx is connected to itself. This connection cannot be translated
with any instruction. Connect the link to another link or block.

«membership function xxx already defined»
The membership function name xxx was alreay used for the same Fuzzy Variable.
Change the membership function name.

«memory overflow. Var xxx not added»
The xxx variable has not been added in the apposite tool because there is not enaugh
RAM locations in the device to allocate the variable.

«mismatched operand type»
The instruction uses a variable whose type is not allowed in the context. See the instruc-
tion grammar.

«missing argument xxx»
The name xxx, specified as interrupt identifier within the interrupt-related function, must
be present in the IrqPriority() function call.

«missing conditional expression in block xxx»
The Conditional Block xxx has been inserted in the block diagram but the conditional ex-
pression has not been specified yet. Open the block and write the conditional expression.

FUZZYSTUDIO™ 4.1

98

«missing source and destination in block xxx»
The destination global or predefined variable has not been specified yet in the Send or Re-
ceive Block xxx. Open the block and select the source variable.

«number too big»
The given number is too large to be held in the specified type. Choose a larger variable’s
type to hold the given value.

«only constant array are supported»
It is not possible to modify table’s values. Tables cannot be specified as left value in as-
signment instructions.

«pending branch in block xxx»
The output link of the block xxx is not connected to any other part of the program. Connect
the link to the next block in the block diagram.

«pending ‘No’ branch in block xxx»
The output ‘No’ link of the Conditional Block xxx is not connected to any other part of the
program. Connect the link to the next block in the block diagram.

«pending ‘Yes’ branch in block xxx»
The output ‘Yes’ link of the Conditional Block xxx is not connected to any other part of the
program. Connect the link to the next block in the block diagram.

«predefined variable expected»
The specified instruction needs a predefined variable as operand.

«procedure xxx already defined»
The procedure name xxx has been already used in another procedure. Change one of the
procedure names.

«procedure “xxx” called with too many arguments»
Invalid number of arguments; “xxx” procedure requires a different number of arguments.

«procedure “xxx” cannot be called with the call instruction»
You are trying to call a predefined procedure explicitely. Only user defined procedures can
be called with the call instruction.

«second argument must be a lvalue»
The second argument is not a lvalue (left value in assignment) as required. Check for syn-
tax errors.

«second argument must be a variable»
The second argument is a constant expression, but a variable is required. Check for syn-
tax errors.

«syntax error»
Generic syntax error in writing instruction. Check for typing errors.

«syntax error reading “xxx”»
FSCcode contains an illegal character. This is an internal error : please contact
STMicroelectronics Fuzzy Logic B.U.

13 - COMPILER

99

«the operand must be a Global Variable»
A predefined variable has been specified as operand where only Global Variables can be
accepted.

«the operand must be a variable»
An incorrect item has been found where a variable should be placed. Check the instruction
grammar.

«this function can not be used with current compiler option»
The function IsOverflow or IsUnderflow have been used without setting the overflow con-
trol compiling option.

«too many operands»
More operands than expected have been specified in the instruction. With arithmetic op-
erations, up to two operands with one operator can be used.

«type xxx unknown»
The specified type has not been recognized by the Compiler: the only types allowed are:
BYTE, S_BYTE, WORD, S_WORD. Check for typing errors.

«type = xxx unsupported instruction»
The assignment instruction is not supported for the specified variable type. Check for syn-
tax or typing errors.

«xxx undeclared fuzzy variable»
The xxx fuzzy variable has been used but it has not been declared yet.

«xxx undefined»
The operand xxx is undefined. Check for typing errors.

«xxx undefined device»
The xxx device name specified in the function call instruction does not exist. Check the de-
vice name for typing errors.

«xxx undefined for yyy»
The item xxx is misplaced for the item yyy. Check for syntax errors.

«xxx undefined fuzzy variable»
The specified fuzzy variable xxx was not defined. Define the fuzzy variable with the Fuzzy
System editor before to use it.

«undefined interrupt»
The interrupt name specified in the call instruction does not exist. Check for typing errors.

«undefined label»
The label specified in the jump instruction has not been defined yet.

«xxx undefined membership function»
The specified membership function xxx was not defined. Define the membership function
with the Membership Functions editor before to use it.

FUZZYSTUDIO™ 4.1

100

«undefined procedure»
The procedure specified in the call instruction does not exist. Check the procedure name
for typing errors.

«xxx unknown»
The item name “xxx” is unknown; define the item before using it.

«unknown device»
The device name specified in the DeviceSet() function is unknow. Check for typing errors.

«xxx unsupported»
The procedure xxx is not supported.

«unsupported expression»
The Compiler cannot process the specified expression because it has too many operands
and operators or a not supported syntax.

«unsupported instruction»
The specified instruction is not supported inside ASM blocks.

«unsupported Instruction on a Word variable»
L’istruzione specificata non puo’ essere utilizzata con variabili Word.

«variable expected»
The specified instruction needs a variable as operand.

«word type constant out of range»
The specified constant is out of range [0 , 65535] for the WORD type or [-32768 , 32767]
for the S_WORD type.

«wrong number of parameters»
The number of parameters specified in the function is not correct. Check for missing or ex-
ceeding parameters.

Compilation Warnings

«bit operation with signed variables»
Bitwise operation with signed variables could be inconsistent.

«bit shift operation with signed variables»
Bitwise shift operation with signed variables could be inconsistent.

«loop in block xxx»
The output link of the block xxx is connected to its input link. This may cause an infinite
loop.

«“DeviceSet” too many parameters; ignored the last xxx»
More parameters than the requested ones have been specified for the configuration of the
specified peripheral; those surpluses will be ignored.

13 - COMPILER

101

«dynamic indexing is allowed for (BYTE, S_BYTE) tables with up to 256
entries»

For the target device indirect access is allowed only for (BYTE, S_BYTE) tables with up to
256 entries.

«dynamic indexing is allowed for (WORD, S_WORD) tables with up to
128 entries»

For the target device indirect access is allowed only for (WORD, S_WORD) tables with up
to 128 entries.

« “for” body looped due to condition statically true»
The condition of the FOR loop is always true. In this case loop’s instructions will always be
performed.

« “for” statement ignored due to condition statically false»
The condition of the FOR loop is always false. In this case loop’s instructions will never be
performed.

« “if” condition statically false, direct “else” execution»
The condition of the IF statement is always false. In this case the instructions of the block
ELSE will automatically be performed.

« “if” condition statically true, direct “then” execution»
The condition of the IF statement is always true. In this case the instructions of the block
THEN will automatically be performed.

« “if” ignored due to condition statically false»
The condition of the IF statement is always false. In this case the instructions of the block
IF will never be performed.

«xxx may be reserved»
The name xxx is reserved for the target device.

«missing procedures name»
The procedure’s name has not been specified yet in the Call Block. Open the block and se-
lect the procedure to be called

«missing source and destination in block xxx»
The destination global or predefined variable has not been specified yet in the Send or Re-
ceive Block xxx. Open the block and select the source variable

«no interrupt selected in Interrupt Reset Block»
An Interrupt Reset Block has been inserted without specifying any interrupt source to be
reset. Specify the interrupt pending you want to cancel or delete the block.

«not linked block xxx»
The block xxx has been inserted but not connected in the block diagram.

«unused Fuzzy variable xxx in block yyy»
The Fuzzy variable xxx in the Fuzzy Block yyy has been defined but it is never used in the
Fuzzy Rules.

FUZZYSTUDIO™ 4.1

102

«“while” body looped due to condition statically true»
The condition of the WHILE loop is always true. In this case loop’s instructions will always
be performed.

«“while” statement ignored due to condition statically false»
The condition of the WHILE loop is always false. In this case loop’s instructions will never
be performed.

103

14 - DEBUGGER

The Debugger is the tool that allows to test the developed program by means of the chip’s
simulation. The Debugger graphical environment allows to choose and visualize the sig-
nals to be observed in their time evolution. Then, you can test your program before imple-
menting the application.

Using the Debugger tool the following functionalities are available:

• Simulation of the chip for a user-defined time interval.

• Visualization of the results in a graphical plotting window and in decimal, hexadecimal and
binary numeric value.

• Tracing of the source program with step-by-step debugging, executing a program line for
each step.

• Visualization and step-by-step tracing of the generated Assembler.

• Watch of the internal values and signals, with the possibility of evaluating user’s expres-
sions.

• Definition of signals applied to the pins by means of the Stimulus files.

• Dump of the Data and Program Memory in decimal, hexadecimal and binary format.

• Trace sequence of the program block in execution.

• Status report of the Debugger.

• Stop of simulation by means of breakpoints on events.

In this chapter you will learn to:

• Run the Debugger in different modes.

• Set the Watches and the items to plot graphically.

• Write the Stimulus file to set the signals applied to the external pins.

• Use the Plot Window to examine the result of the simulation.

• Get information from the various views available.

DEBUGGER

FUZZYSTUDIO™ 4.1

104

Debugger Window

This section provides an overview of the major elements of the Debugger window such as
menus, toolbar and status bar, available when the Debugger session is open.

Fig. 14. - Debugger environment

Debugger menus

The following menu items are available when the Debugger is active:

File Contains commands to create, open, close, save and print window contents
and to visualize the project’s information.

Edit Provides standard editing commands.

View Contains commands to hide/show toolbars, status bar, Project and Output
windows.

Tools Contains commands to close Debugger, Compiler or Programmer tools.

Debugger Contains command related to the Debugger’s functions.

Window Contains commands related to window management.

Help Contains help commands.

14 - DEBUGGER

105

Debugger window toolbar

The most frequently used commands can be executed quickly by clicking over the corre-
sponding buttons available on the toolbar.

Fig. 14.2 - Debugger toolbar

Blocks Editor window Status Bar

The Status Bar displayed at the bottom of the Blocks Editor provides a brief description of
the toolbar command currently pointed by the mouse cursor.

Fig. 14.3 Debugger status bar

Opening and Closing the Debugger

After opening the Debugger session for the first time, the status of the simulation and of the
workspace is saved. So, each time you open again the debugger session of the single pro-
ject, you will find the same situation that you left when the debugger session was closed.
The status is joined with the project: opening another project you can find the status of that
project.

To Open the Debugger session select the item DEBUGGER > OPEN from the TOOL menu
or click the apposite toolbar button in the main window. If the session is opened for the first
time or the last time no Debugger windows were open, the FSCODE window is opened.
Note: If the project has not been compiled after the last change, the Debugger cannot be
run and a message inviting you to compile before opening the Debugging session is gener-
ated.

You can close the Debugger session in two ways that are slightly different:

• Select the command CLOSE DEBUGGER WINDOWS from the DEBUGGER menu if you
simply want to close all the debugger windows.

• Select the command DEBUGGER > CLOSE from the TOOLS menu if you want to close all
the windows and discharge the computer memory from the debugger data.

To reset the simulation and restart from the time 0, clearing all the data, select the com-
mand RESTART from the DEBUGGER menu or click the apposite toolbar button in the
debugger toolbar.

Time Run Mode Run Mode

Step Mode
Animate Mode

Restart Add, Remove,
Select Watch

FUZZYSTUDIO™ 4.1

106

Debugger Working Modes

The Debugger environment supplies you with several views to easily manage the simula-
tion data. You can find a detailed description of these views in the next paragraphs. There
are four modes available to launch the simulation : Step, Run, Time Run, Animate.

Step Mode

This mode allows you to simulate the program step-by-step in order to debug the developed
program instructions. It allows to execute a single instruction and view the results.

The step depends on the current window in foreground. If the ASM window (see later in this
chapter) is in foreground the single step corresponds to the execution of the current Assem-
bler instruction. If the FSCODE window (see later in this chapter) is in foreground the step is
the single FSCODE instruction that corresponds to several Assembler lines. If none of the
above mentioned windows is in foreground, the step is determined by the last of two that
was in foreground.

To execute one step of simulation select the command STEP in the DEBUGGER menu or,
better, click the apposite Debugger toolbar menu.

Run Mode

This mode executes the simulation until a stop command is issued by the user or a break-
point or an exception (see later) is encountered.

To start the simulation in Run mode select the command RUN SIMULATION from the DE-
BUGGER menu or click the apposite toolbar button.

To stop the simulation in Run mode click the “Stop Simulation” button in the Stop dialog-box
open in the upper-right side of the FUZZYSTUDIO™4.1 main window after the RUN com-
mand.
Note: During the execution of the simulation, data in the Debugger windows are not up-
dated until the execution is stopped.

Time Run Mode

This mode is similar to the Run mode with the addition that the program can be stopped after
the execution of a period of simulation time specified by the user.

To run simulation in Time Run mode:

• Specify the time and the time unit (ns, us, ms, s) in the apposite text box in the Debugger
toolbar

• Click the Time Run toolbar button.

• To stop the simulation before the end of the specified period, click the “Stop Simulation” but-
ton in the Stop dialog-box opened in the upper-right side of the FUZZYSTUDIO™ 4.1 main
window after the RUN command.

Note: The execution in Time Run mode ends exactly after the completion of the last Assembler
instruction. This causes the simulation to be executed for a little bit longer than the specified
one. The exact execution time in nanoseconds is showed in the text box of the Debugger
toolbar after the conclusion of the simulation interval.

14 - DEBUGGER

107

Animate Mode

In this mode the simulation is executed step-by-step (see Step mode previously described)
continuously, until the simulation is stopped. After each step data are updated, allowing you
to inspect in animation the evolution of the simulation. The delay between steps is
configurable by the user, allowing to slower or increase the animation speed.

To run a simulation in Animate mode:

• Select the ANIMATE command from the DEBUGGER menu or click the apposite toolbar
button.

• To stop the simulation, click the “Stop Simulation” button in the Stop dialog-box opened in
the upper-right side of the FUZZYSTUDIO™ 4.1 main window after the ANIMATE com-
mand.

To change the delay between steps:

• Select the command OPTIONS > ANIMATION SPEED from the DEBUGGER menu. The
Options dialog-box opens.

• Scroll the bar to slower or increase the animation speed.
Note: The simulation is stopped when a breakpoint or exception is encountered.

FSCODE Window

The FSCODE window shows the listing of the program in FSCODE language, allowing you
to follow the tracing of the program instructions during the simulation. An arrow indicates
the current line to be executed.

Fig. 14.4 - FSCODE window

FUZZYSTUDIO™ 4.1

108

To open the FSCODE window select the command FSCODE WINDOW from the DE-
BUGGER menu.

In the FSCODE window it is possible to set breakpoints on the program lines and select
items to watch. To set a breakpoint in a program line:

• Right-click the program line you want to stop: the pop-up menu appears.

• Select the BREAKPOINT command from the pop-up menu.

• A bullet appears at the beginning of the program line.

To cancel the breakpoint select again the command from the pop-up menu or use the ap-
posite dialog-box (see the “Breakpoint and Exceptions paragraph”).

To select an item to watch:

• Right-click the item to watch: the pop-up menu appears.

• Select the command ADD TO WATCH from the pop-up menu.

• The selected item appears in the list of watches in the Watch Editor.
Note: the watches selection do not distinguish not allowed items, so you may insert terms
with undefined value.

ASM Window

The ASM window shows the listing of the program in Assembler language, allowing you to
follow the tracing of the program Assembler instructions during the simulation. An arrow in-
dicates the current line to be executed.

Fig. 14.5 ASM Window

To open the Assembler window select the command ASM WINDOW from the DE-
BUGGER menu.
In the ASM window it is possible to set breakpoints on the program lines in the same way as
previously described for the FSCODE window.

14 - DEBUGGER

109

Watch Editor

The Watch Editor is the tool to inspect the variables and signals current value (watches).
You can insert or remove the watches using the apposite commands; in addition the Watch
Editor supplies an expression evaluator in order to get values from an arithmetic expres-
sion of several watches.

To open the Watch Editor select the command WATCH EDITOR from the DEBUGGER
menu.

Fig. 14.6 - Watch Editor window

The Watch Editor window consists in two parts: in the left part you can insert and edit the
items or the expressions to watch; in the right part the corresponding values are showed.

To add a new item or expression:

• Right-click anywhere on the Watch Editor client area or click the apposite Debugger toolbar
button.

• A text-box becomes available in the expression list.

• Write the item name or expression in the text-box.

•
Note: Inserting a wrong name or a non correct expression, the expression evaluator re-
turns respectively the error message “Undefined Name” and “Invalid Expression”. Another
message that can occur is “Division by zero”.

To make the watch insertion easier, the Watch Editor supplies the Watch Select tool that al-
lows to select the available items from the list organized as a tree-view. Act as follows:

• Click the Watch Select button from the Debugger toolbar.

• Navigate along the tree-view to find the item to watch.

• Select the item or an items’ category.

• Click the Add button or double-click the item: the item is inserted in the expression list box in
editing.

FUZZYSTUDIO™ 4.1

110

• Search for another item to be inserted or close the Watch Select tool clicking the Close but-
ton.

There is another way to insert automatically the items to watch by using the FSCODE win-
dow:

• Open the FSCODE window or put it in foreground.

• Right-click the item to watch: the pop-up menu appears.

• Select the command ADD TO WATCH from the pop-up menu.

• The selected item appears in the list of watches in the Watch Editor.

Note: the watches selection do not distinguish not allowed items, so you may insert terms
with undefined value.

Expressions syntax

The text-boxes to edit expressions allow to freely write the expressions. So you have to
take care in what you write, otherwise the expression cannot be evaluated. You must use
only user-defined or predefined items and only allowed operands.

The allowed operators are the following (the function is the same as C language):

Arithmetic operators:

+ - * / - (unary)

Relational operators (return 0 or 1):
> < >= <= !=

Logic operators (return 0 or 1):
! && ||

Bitwise logic operators:
~ >> << & | ^
In addition to the user-defined and predefined variables, some special items can be used in
the Watch Editor. They represent some registers of the device and must be preceded by a
dot:

Registers:
.ram[x] x = RAM address
.eprom[x] x = EPROM address
.chan[x] x = A/D Channel number
.reg_conf[x] x = Configuration Register address
.reg_input[x] x = Input Register address
.reg_output[x] x = Output Register address
.reg_fuzzy[x] x = Fuzzy Input Register number

Core items:
.pc Program Counter
.time Simulation time in nanoseconds
.sp Stack Pointer
.C Carry Flag
.Z Zero Flag

14 - DEBUGGER

111

.S Sign Flag
Fuzzy buffers:
.stack0 First buffer to perform MAX or MIN operation.
.stack1 Second buffer to perform MAX or MIN operation.
.num Numerator of defuzzyfication formula.
.den Denominator of defuzzyfication formula.
.teta Activation value of the Antecedent part of the Rule.
Note: When you want to watch a fuzzy variable, you must specify also the fuzzy block
name to which the variable belongs. The format to be used is: fuzzy_block_name.vari-
able_name.

Breakpoints

The Breakpoints allow to stop the simulation, in order to inspect the results, when an event
is triggered or when a program line is reached.

You can easily add or remove line breakpoints operating with the FSCODE and ASM win-
dows. In addition the Breakpoints dialog-box allows to edit event breakpoints and show all
the active ones.

To add a line breakpoint:

• Open the FSCODE or the ASM window or put it in foreground.

• Right-click the program line you want to stop: the pop-up menu appears.

• Select the BREAKPOINT command from the pop-up menu

• A bullet appears at the beginning of the program line

To cancel the breakpoint select again the command from the pop-up menu or use the ap-
posite dialog-box (see below).

To set event breakpoints you have to open the Breakpoint dialog-box by selecting the
command BREAKPOINTS… from the Debugger menu.

The dialog-box is composed by a text-box that allows to set the condition that triggers
the breakpoint, and a list-box where all set breakpoints are listed (both line and event
types).

To add a breakpoint on event, you have to specify the condition that determines the stop
of simulation:

• Select the “Event” sheet in the top of dialog-box.

• Write the condition using the syntax described below. The condition is inserted when you
write and it appears in the list-box.

• Click the New button if you want to insert another breakpoint.

• Click O.K. to close dialog-box and confirm your settings.

FUZZYSTUDIO™ 4.1

112

The condition is an expression having as operands the variables and the signals avail-
able and the syntax and operators described in the Watch Editor paragraph.

Examples of conditions:
PA0 == 1

Var0 <= 10

Var0+Var1 != Var2

.ram[20] == 30 && .ram[21] == 19

.pc > 1000 || .time > 200000

Warning: no control is performed in what you write as breakpoint condition: not valid
expressions are automatically not considered.
You can also remove the active breakpoints by using the Breakpoints dialog-box:

• Select the breakpoint to be removed

• Click the Remove button

• If you want to remove all the active breakpoints click the “Remove All” button.

Fig. 14.7 - Breakpoints dialog-box

14 - DEBUGGER

113

Exceptions

Exceptions are particular fault conditions that can be intercepted to stop the simulation.
You can ignore those situation or set the stop of the simulation by using the Exceptions dia-
log-box:

1. Select the EXCEPTIONS… command from the DEBUGGER menu

2. Select the Exception from the exception list-box

3. Check the “Stop simulation” or the “Ignore” radiobutton in the “Action” section.

4. Click the “Stop All” button if you want all the exceptions active or click th e”Ignore All” if
you want to disable all them.

5. Click the Close button.

Fig. 14.8 - Exceptions dialog-box

The Exceptions are characterized by a code and a message that depends on the target
device. You can find the list of the Exceptions for each devices in the Appendix A.
When an enabled Exception occurs a dialog-box appears showing the exceptions occurred
in the last cycle.

• Click the Stop button to stop the simulation and inspect the exception causes.

• Click the Ignore button to ignore the event and continue the simulation until the exception
will occurred again.

FUZZYSTUDIO™ 4.1

114

Stimulus Editor

The Stimulus Editor is a tool that allows to write the Stimulus file used to specify the signals
to be aplied to the device pins. The tool is external to the FUZZYSTUDIO environment but
can be run from this. It is a text editor where you can write a program by using a simple repre-
sentation language whose syntax is described lated in this paragraph.

Fig. 14.9 - Stimulus Editor

To run the Stimulus Editor select the STIMULUS EDITOR command from the DEBUGGER
menu. The program supplies the standard editing command and the possibility to load pre-
viously defined stimulus files. The text editor recognizes the keyword and the device pins’
name and highlights them by using a colored and underlined font when you write: blue for
the keywords and red for the pins. This allows you to check typing errors when you write.

The SET STIMULUS FILE command in the DEBUGGER menu has to be used to specify the
stimulus file to be used. The command determines the opening of the standard Open dia-
log-box that allows you to select the stimulus file edited with the Stimulus Editor. The Stimu-
lus files have .stm extension.

The SET STIMULUS FILE command establishes the stimulus file currently used by the
Debugger. You can modify this file with the Stimulus Editor adter executing the command:
to make effective the modification you have to used the COMPILE STIMULUS FILE com-
mand from the DEBUGGER menu. This command is also automatically performed with the
SET STIMULUS FILE command.

The COMPILER STIMULUS FILE command performs the compilationof the stimuls file. If
the file does not exist or in case of syntax errors, a window opens showing the error mes-
sages.
Note: The setting or compilation of the Stimuls File substitues the Stimulus file currently in
use.

14 - DEBUGGER

115

Generic structure of a Stimulus File

The structure of the Stimulus file is composed by some sections of the following types:

• Digital Signals description

• Analog signals description

• Periodic signals description

• Buses declaration

• Buses description

• Thresholds declaration

• Random signals declaration

• Comments

You do not need to use all the sections and they can be used without any order or priority
as many times as you want (excluding thresholds). The bus declaration must be speci-
fied before the bus description.

Digital signals description

This section is used to specify the digital signals in input to the pins of the device. The syntax
is the following:
.signal pin_name{
time: value,
time: value,
…………….
time; value
};

where:

• pin_name is the device pin with the same name as described in the data-sheet. You can find
the list of these names in Appendix A.

• time is the time value when a signal variation occurs. The time value is expressed with a real
number and the time unit appended (for example: 10n, 20.5u, 120m, 2.2s)

• value is the new value of the signal at the specified time. In the case of .signal costruct the
only allowed values are 0 and 1.

The following examples generate a step function on the port pin PB4 and an impulse of
500ns on the pin PA2:
.signal PB4 {

0u: 0,
5u: 1

};

.signal PA2 {
0n: 0,
10u: 1,
10,5u: 0
};

FUZZYSTUDIO™ 4.1

116

Analog signals description

This section is used to specify the analog signals in input to the pins of the device. You can
use this description not only for analog pins but also for digital pins: the emulator convert the
analog value in the digital value 0 or 1 according to the thresholds set in the apposite decla-
ration section (see later in this paragraph). The syntax is the following:

.analog pin_name {

time: value,
time: value,
…………….
time: value
};

where:

• pin_name is the device pin with the same name as described in the data-sheet. You can find
the list of these names in the Appendix A.

• time is the time value when a signal variation occurs. The time value is expressed with a real
number and the time unit appended (for example: 10n, 20.5u, 120m, 2.2s)

• value is the new value of the analog signal at the specified time. In the case of .analog
costruct the only allowed values are real number between 0 and 5 (Volts).

Example:

.analog Ain3 {
0u: 0.5,
5u: 1.2,
10u: 4.6,
20u: 0.9
};

Grouping signals in buses

It is possible to group signals in buses by means of the buses declaration and use them with
the .bus construct. To group signals use the following declaration syntax:

.declare bus_name = pin_name, pin_name,….., pin_name ;

where:

• bus_name is a user defined name that identifies the group of signals. It is then specified in
the .bus construct.

• pin_name is the device pin with the same name as described in the data-sheet. You can find
the list of these names in Appendix A.

Examples:

.declare PORTC = PC0, PC1, PC2, PC3;

.declare INPUT_DATA = PA0, PA1, PA4, PA6, PA7

14 - DEBUGGER

117

The description of the buses is performed by using the .bus construct whose syntax is the
following:

.bus bus_name {

time: value,
time: value,
…………….
time: value
};

where:

• bus_name is the name of the bus as specified in the declaration.

• time is the time value when a bus value variation occurs. The time value is expressed with a
real number and the time unit appended (for example: 10n, 20.5u, 120m, 2.2s)

• value is the new value of the bus at the specified time. In the case of .bus construct the al-
lowed values depend on the length of the bus: the maximum value is (2^n)-1, being n the
number of signals that compose the bus; the minimum value is 0.

Examples:

.bus PORTC {
0u: 0,
10u: 10,
20u: 8,
30u: 15,
40u: 3
} ;

.bus INPUT_DATA {
0u: 0,
10u: 10,
20u: 20,
30u: 30
} ;

FUZZYSTUDIO™ 4.1

118

Periodic signals

There are two ways to define periodic signals: the .clock construct and the .jump state-
ment.

The .clock construct allows to define periodic digital signals with specified duty-cycle. The
syntax is the following:

.clock pin_name {

period,

initial_value,

duty_cycle

};

where:

• pin_name is the device pin with the same name as described in the data-sheet. You can find
the list of these names in the Appendix A.

• period is the period of the signal. The value is expressed with a real number and the time
unit appended (for example: 10n, 20.5u, 120m, 2.2s).

• initial_value is the value of the signal at the start time. The only allowed values are 0 and 1.

• duty_cycle is the ratio between the time when the signal value is 1 (Ton) and the entire pe-
riod. The duty cycle can be expressed as the duration of Ton, expressed with a real number
and the time unit appended (for example: 10n, 20.5u, 120m, 2.2s), or as percent (for exam-
ple 30%, 23,4% etc.). This parameter can be omitted: in this case a signal with 50% of
duty-cycle is generated.

Examples:

Declare a digital periodic signal as a clock, applied on PB5 pin. It has a period of 24u, 0
as init value, and a Ton of 12u :
.clock PB5 {

24u ,
0,
12u
} ;

Declare a digital periodic signal as a clock, applied on pin PA5. It has a period of 20u, 1 as
init value, and a dut-cycle of 25%

.clock PA5 {
20u ,
1 ,
25%
} ;

Declare a digital periodic signal as a clock, applied on pin PA6. It has a period of 30u, 1 as
init value, and a duty-cycle of 50%

.clock PA6 {
20u ,
1
} ;

14 - DEBUGGER

119

The other way to generate more complex periodic signals, both digital and analog, is to use
the .jump statements. These statements can be used in the .signal, .analog and .bus con-
structs in the place of the last signal value specified. They allow to repeat the specified sig-
nal from the specified time.

Examples:

The following example generates a periodic signal having period of 24 microseconds and
50% duty-cycle

.signal PB2 {
0u: 0,
12u: 1,
24u: .jump 0u
} ;

The following example generates a periodic signal after a start-up sequence. After the first
cycle the signal generates a period of 10 microseconds and 50% duty-cycle.

.signal PB6 {
0u: 0,
2u: 1,
4u: 0,
14u: 1,
24u: .jump 4u
} ;

The following example generates an analog periodic signal.

.analog Ain0 {
0u: 0,
20u: 1.25,
40u: 2.5,
60u: 3.75,
80u: 5,
100u: .jump 0u
} ;

FUZZYSTUDIO™ 4.1

120

Random signals

When a program is tested, many times random signals can be useful. You can create this
kind of signals by using the .random statement with the .signal, .analog and .bus
contructs. The syntax is the following:

.construct_name pin_name .random time ;

where:

• construct_name is .signal, .analog or .bus

• pin_name is the device pin with the same name as described in the data-sheet. You can find
the list of these names in the Appendix A.

• time is the period of the generation of a new random value.

Examples:

generation of a random digital signal whose value is updated every 100 microseconds:
.signal PB3 .random 100u ;

generation of a random analog signal whose value is updated every 15 milliseconds:
.analog Ain2 .random 15m ;

Thresholds declaration

The analog signal generation can be used also with digital pins. In this case the emulator
must know the threshold values to convert the analog value in a digital level 0 or 1. To spec-
ify the threshold values use the .vh and .vl keywords with the following syntax:

.vh value ; (high threshold voltage value)

.vl value ; (low threshold voltage value)

the value parameter is the voltage value of the threshold expressed with a real number be-
tween 0 and 5.

Note: if the thresholds declaration is omitted the default value are assumed: 2.0 for vh and
0.8 for vl.

Comments

Comments can be inserted inside the Stimulus file in order to improve the readability of the
stimulus program. Use the characters /* to start a comment sequence and the characters */
to end the sequence.

14 - DEBUGGER

121

Stimulus Editor Error Messages

The following error messages and warnings can occur when compiling the stimulus file:

invalid stimulus file
The stimulus file contains errors and cannot be inserted in the simulation. Check for syn-
tax or typing errors.

invalid analog value: it must be in the range [0.0-5.0]
A wrong value has been specified in the .analog statement as analog signal value. The al-
lowed values are real numbers between the range [0.0 – 5.0] volts.

invalid digital value: it must be 0 or 1
A wrong value has been specified as digital signal value. The allowed values are 0 and 1
corresponding respectively to a low and high voltage value supplied to a digital pin.

.vh instruction: prototype must be “.vh voltage ;”
The threshold instruction .vh has not been specified correctly. Check for syntax or typing
errors.

.vl instruction: prototype must be “.vl voltage ;”
The threshold instruction .vl has not been specified correctly. Check for syntax or typing
errors.

.vh instruction: too few parameters
The threshold instruction .vh has not been specified correctly. Check if the threshold
value is missing of for syntax or typing errors.

.vl instruction: too few parameters
The threshold instruction .vl has not been specified correctly. Check if the threshold value
is missing of for syntax or typing errors.

.vh instruction: too much parameters
The threshold instruction .vh has not been specified correctly. Check if the threshold
value has been specified correctly and if it has been specified just once.

.vl instruction : too much parameters
The threshold instruction .vl has not been specified correctly. Check if the threshold value
has been specified correctly and if it has been specified just once.

“vh” parameter already defined
The high threshold parameter vh has been already defined with a .vh instruction previ-
ously specified.

“vh” parameter lower than “vl” parameter
The specified high threshold value is lower than the low one. Check the values specified
in the .vh and .vl instruction or as default and correct them.

vl parameter already defined
The low threshold parameter vl has been already defined with a .vl instruction previously
specified.

FUZZYSTUDIO™ 4.1

.declare instruction : prototype must be “.declare bus name = list of
signal names ;”

The .declare instruction has not been specified correctly. Check for syntax or typing er-
rors.

.declare instruction : missing bus name
The .declare statement has not been specified correctly: the symbolic name for the bus
has not been specified correctly or it is missing. Add the bus name just after the .declare
instruction.

.declare instruction : missing =
The .declare statement has not been specified correctly: the assignment character ‘=’ has
not been specified correctly or it is missing. Add the ‘=’ symbol just after the bus name.

.declare instruction : missing , between signals names
The .declare statement has not been specified correctly: the signal names have not been
separated correctly with the ‘,’ character.

.signal instruction: invalid prototype
The .signal instruction has not been specified correctly. Check for syntax or typing errors.

.signal instruction: prototype must be “.signal signal name { list of sig-
nal values } ;”

The .signal statement using the list of signal values has not been specified correctly.
Check for syntax or typing errors.

.signal instruction: prototype must be “.signal signal name .random
time ;”

The .signal instruction using the .random statement has not been specified correctly.
Check for syntax or typing errors.

.signal instruction : missing signal name
The .signal instruction has not been specified correctly: the symbolic name for the signal
is missing. Add the signal name just after the .signal instruction.

.signal instruction : missing {
The .signal instruction has not been specified correctly: the open brace ‘{‘ is missing. Add
the brace just after the signal name to enclose the signal values.

.signal instruction : missing }
The .signal instruction has not been specified correctly: the close brace ‘}‘ is missing. Add
the brace at the end of the signal values to close the list.

.signal instruction : the list of signal values is empty
The .signal instruction has not been specified correctly: no value has been specified in the
list. Include the signal values in the list.

.signal instruction : the list of signal values is not valid
The .signal instruction has not been specified correctly: the list of the signal values con-
tains syntax or typing errors.

.analog instruction : invalid prototype
The .analog instruction has not been specified correctly. Check for syntax or typing errors.

14 - DEBUGGER

123

.analog instruction : prototype must be “.analog analog name { list of
analog values } ;”

The .analog statement using the list of analog values has not been specified correctly.
Check for syntax or typing errors.

.analog instruction : prototype must be “.analog analog name .random
time ;”

The .analog instruction using the .random statement has not been specified correctly.
Check for syntax or typing errors.

.analog instruction : missing analog name
The .analog instruction has not been specified correctly: the symbolic name for the analog
signal is missing. Add the signal name just after the .analog instruction.

.analog instruction: missing {
The .analog instruction has not been specified correctly: the open brace ‘{‘ is missing. Add
the brace just after the analog signal name to enclose the analog signal values.

.analog instruction: missing }
The .analog instruction has not been specified correctly: the close brace ‘}‘ is missing.
Add the brace at the end of the analog signal values to close the list.

.analog instruction: the list of analog values is empty
The .analog instruction has not been specified correctly: no value has been specified in
the list. Include the analog signal values in the list.

.analog instruction: the list of analog values is not valid
The .analog instruction has not been specified correctly: the list of the signal values con-
tains syntax or typing errors.

.bus instruction: invalid prototype
The .bus instruction has not been specified correctly. Check for syntax or typing errors.

.bus instruction: prototype must be “.bus bus name { list of bus values
} ;”

The .bus statement using the list of bus values has not been specified correctly. Check for
syntax or typing errors.

.bus instruction: prototype must be “.bus bus name .random time ;”
The .analog instruction using the .random statement has not been specified correctly.
Check for syntax or typing errors.

.bus instruction : missing bus name
The .bus instruction has not been specified correctly: the symbolic name is missing. Add
the bus name just after the .bus instruction.

.bus instruction : missing {
The .bus instruction has not been specified correctly: the open brace ‘{‘ is missing. Add
the brace just after the bus name to enclose the bus values.

.bus instruction: missing }
The .bus instruction has not been specified correctly: the close brace ‘}‘ is missing. Add
the brace at the end of the bus values to close the list.

FUZZYSTUDIO™ 4.1

124

.bus instruction: the list of bus values is empty
The .bus instruction has not been specified correctly: no value has been specified in the
list. Include the bus values in the list.

.bus instruction: the list of bus values is not valid
The .bus instruction has not been specified correctly: the list of the bus values contains
syntax or typing errors.

.bus instruction: bus name not found
The bus name specified in the .bus statement has not been declared before with the .de-
clare statement. Declare the bus name or check for typing errors.

.clock instruction : invalid prototype
The .clock instruction has not been specified correctly. Check for syntax or typing errors.

.clock instruction : prototype must be “.clock clock name { period,
initValue, dutycylcle or Ton} ;”

The .clock instruction has not been specified correctly. Check for syntax or typing errors.

.clock instruction : missing clock name
The .clock instruction has not been specified correctly: the symbolic name for the clock
signal is missing. Add the clock signal name just after the .clock instruction.

.clock instruction : missing {
The .clock instruction has not been specified correctly: the open brace ‘{‘ is missing. Add
the brace just after the clock signal name to enclose the clock parameters.

.clock instruction : missing }
The .clock instruction has not been specified correctly: the close brace ‘}‘ is missing. Add
the brace at the end of the clock parameters list.

.clock instruction : the list of clock parameters is empty
The .clock instruction has not been specified correctly: no parameter has been specified.
Include the clock signal parameters in the list.

.clock instruction : the list of clock parameters is not valid
The .clock instruction has not been specified correctly: the list of the bus values contains
syntax or typing errors.

.clock instruction : the Ton is greater than the period
The specified Ton parameter value is not valid because greater than the period: remem-
ber that the Ton is a time part of the period so it must be lower than the period parameter
value. Specify a correct value for the Ton or for the period or check for typing errors.

“name” is an invalid signal name
The signal name “name” is not a valid device pin name. Check the correct pin name in the
list of the available ones in the Appendix A of this manual.

Signal “name” already defined
The signal name “name” has been previously defined. Choose another signal name.

14 - DEBUGGER

125

Simulation Plot

The simulation results are represented in their time evolution, in a graphic way, in the Plot
window where signals and buses are traced. In a few words, it works as an oscilloscope
with the probes connected to the hardware of the selected device. The items to be plotted
are selected by means of the Plot Select dialog-box, where all the available signals, vari-
ables and buses are listed.

The signals are functions with two values that are the logical states 0 and 1 and they are rep-
resented with a continuous broken line. The buses indicate the content of the register or a
set of signals and they are represented with a continuous stripe, broken in the points where
the values change; the values are written inside the stripe.

After the stop of simulation the signals can be carefully examined in their evolution. Many
commands such as zoom, cursors, jumps and others are available to make it easy to in-
spect the results. UNDO and REDO commands are available for these kind of actions.

Plot window

The Plot window is organized in two main parts: in the left side you can find the list of the se-
lected items to be plotted, in the right side the corresponding signals lines and buses
stripes. Just below the item name, you can find the values of the item in the times pointed by
the red and yellow cursors (see later in this chapter). If the cursors are hidden, the default
value (i.e. the value of the item at the start of the simulation) is showed.

You can set the current plot item by clicking over its name in the left side of the window. An
asterisk (*) just after the item name indicates the current plot item.

In the upper part of the window, just below the toolbar, you can find the indication of the cur-
rently displayed simulation time in nanoseconds.

Fig.14.11 - Plot window

FUZZYSTUDIO™ 4.1

126

Plot window toolbar

The Plot window includes a toolbar to help you to perform the commands quickly. To exe-
cute a task by means of a button, juck click the related button on the toolbar.

Fig.14.12 - Plot window toolbar

Plot window status bar

The status bar displayed at the bottom of the Plot window contains information about the
time points of the simulation currently pointed by the mouse pointer or by the cursors.

Fig. 14.13 - Plot window status bar

The first field indicates the time pointed by the mouse pointer; the second field is the position
of the red cursor; the third field is the position of the yellow cursor; the last field is the time dif-
ference between the position of the two cursors (see later in this chapter to learn about the
cursors).

Selecting plot items

You can select all the items to plot by means of the Plot Select tool. This consists on a
check-list organized as tree-view. The items are organized in categories that are repre-
sented by the nodes of the tree, the leaves are the items to be selected.

The main categories are the following:

Pins: device external pins

Variables: Global and Predefined Variables

Peripherals: signals and variables related to the peripherals

Core: signals related to the Control Unit and interrupts

Fuzzy: buffers for the fuzzy computation

Ram: RAM memory addresses

These categories nodes are further divided in sub-categories nodes in order to make the
items search easier. In addition they allow to select all the items belonging to the categories.

To open the Plot Select dialog-box chose the command PLOT SELECT… from the menu
DEBUGGER.

Zoom In/Out
Expand/Stretch Plot

Undo/Redo, Go to the
Previous / Next Change

Go to selected
time

Go to red/yellow
cursor

Print Plot, Print Preview,
Set Print Options

Time division

14 - DEBUGGER

127

To select one or more items:

Expand the nodes and subnodes to which the item belongs to. You can do this by clicking
the plus sign next to the category name or double clicking on this last.

1. Check the check-box next the item name.

2. Repeat to select other items.

3. Check the node or sub-node check-box to select all the items belonging to the category.

4. Uncheck the items and categories that you do not want to plot anymore.

5. Click OK button to confirm the selection.
Note: You can always select and unselect the items during the debugger session. If the
simulation has been already started, the history of the added items is not retrieved.

Zooming simulation

After stopping the simulation, the results are drawn in the Plot window with the currently set
scale. The drawing scale is represented by the single step of the grid: the time division can
assume values from 50 ns to 500 ms. You can modify the current representation scale by
using the command available on the Plot window toolbar:

• The Zoom Out command increases the time division.

• The Zoom In command decreases the time division.

• The Expand command executes the maximum zoom of the window.

• The Stretch command allow to visualize the entire drawing.

• The Time Division drop-down list allows you to select the desired time division.

By using these commands you can modify the scale of the drawing to examine the result
with different degree of detail.

In addition it is possible to zoom in a selected part of the chart by clicking and dragging
the mouse to open a selection frame. The selected part will be displayed according with
the most suitable time division and centered to the center of the frame.

Fig. 14.14 - Plot Select tree-view

FUZZYSTUDIO™ 4.1

128

Cursors

The Plot window supplies two cursors to take measures in the simulation results: the Yellow
and the Red cursors. They allow to watch time where they are placed, the value of the items
in that time and the time difference between the positions of two cursors.

The time measurements can be watched in the Plot window status bar; the item’s values are
showed just below the item name.

The cursors can be hidden or shown: right-clicking the drawing, the pop-up menu appears
where you can select the commands that allow to insert the cursors where you clicked or
hide them:

• INSERT RED CURSOR

• INSERT YELLOW CURSOR

• HIDE RED CURSOR

• HIDE YELLOW CURSOR

The cursors can be moved along the drawing by click and drag operations. Repeating
the insert command , the cursor is moved in the new place where you clicked.

Go To

The Plot window supplies some commands to jump to one point of the simulation to another
one, according to the type of command. These commands are available in the Plot window
toolbar:

• GO TO RED CURSOR

• GO TO YELLOW CURSORS

• GO TO NEXT CHANGE

• GO TO PREVIOUS CHANGE

The last two commands allow to follow the changes of the currently selected signal or
variable. To select the items click over the corresponding box.

In addition, the toolbar supplies a text box where you can specify the time where to jump.
To do this you have to specify the time and the time unit (ns, us, ms, s). If the time specifi-
cation is not correct the jump is not executed.

Customizing the Plot window

You can customize the plot window changing the colors and the height of the items’ boxes.
In addition it is possible to change the numerical representation of the buses values.

To change the color of the drawing:

• Right-click the mouse over the item to change the color.

• Select SET COLOR command from the appearing pop-up menu.

• Choose the color from the appearing dialog-box.

To change the height of the item’s box:

• Right-click the mouse over the item.

• Select SET HEIGHT command from the appearing pop-up menu.

• In the appearing dialog box you can read the currently set height.

• Change the value in the apposite text-box, specifying a value between 5 and 20.

14 - DEBUGGER

129

• Check the “apply all signals” check-box if you want to change the height to all the items
boxes.

Right-clicking on a bus type item the pop-up menu supplies the commands to change the
numerical representation on the buses values. There are three types of representation
available: decimal, hexadecimal and binary. By using these commands you can change:

• the type of the Red Cursor values.

• the type of the Yellow Cursor values.

• the type of the values in the drawing.

Fig. 14.15 - Change height dialog-box

Plot Print Options

The Plot Print Options can be accessed by the apposite command in the Plot window
toolbar. It allows to specify the part of the simulation drawing to print.

You can choose to print all the simulations by checking the apposite check-box: when un-
checked you have to specify the following data:

• the Start Time of the part to print.

• the End Time.

• the Time Division to set the grid on print.

Fig. 14.16 - Plot Print Options dialog-box

The values must be expressed in nanoseconds.
Note: The simulation is printed in one page; for this reason the scale of representation is
chosen automatically in order to fit the printing on the page.

FUZZYSTUDIO™ 4.1

130

Variables Dump window

The Debugger supplies the possibility to inspect the Global Variables current value and
modify it. You can do that by using the Variables Dump window.

To open the Variable Dump window select the VARIABLE DUMP command from the DE-
BUGGER menu.

Fig. 14.17 - Variables Dump window

The window shows the list of the variables and it is composed by seven fields:

Type: the variable’s type.

Name: the variable’s name.

Value: the variable’s current logic value.

High: the value contained in the high RAM location that stores the variable (if 8-bit
type the field is empty).

Low: the value contained in the low RAM location that stores the variable

High Addr: the address of the high RAM location that stores the variable (if 8-bit type the
field is empty).

Low Addr: the address of the low RAM location that stores the variable

You can edit and modify the VALUE field by clicking on it to change the variables’ current
value during the simulation.
Note: The values modification are considered just after restarting the simulation: you can-
not see the modified values in the Watch Editor and in the other parts of the Debugger
before that moment.

14 - DEBUGGER

131

Status Window

The Status window reports some useful information concerning the status of the debugger
simulation.

You can open the Status window by selecting the STATUS WINDOW command from the
DEBUGGER menu.

Fig. 14.18 - Status window

The data shown in the Status window are the following:

• The project name and path currently used by the debugger.

• The currently used Stimulus file (name and path).

• The current simulation time.

• The Program Counter (PC) current value.

• The Stack Pointer (SP) current value.

• The flags (C, Z, S) status.

• The interrupts priority level and the current status (masked, not masked)

• The action that caused the last simulation stop (user stop, breakpoint or time completed).

Note: The Status window is updated only when the simulation is stopped (by the user or at
the end of a time or instruction step).

FUZZYSTUDIO™ 4.1

132

Block Trace Window

The Block Trace window shows the project blocks processed by the simulation. In addition
the current line inside the block and the processing time are supplied, allowing to estimate
the processing time of the single parts of the program.

To open the Block Trace window select the BLOCK TRACE command from the DE-
BUGGER menu.

Fig. 14.19 - Block Trace window

Note: The last block processed is showed at the top of the list.

Memory Dump

The Debugger environment supplies the dump of the Program Memory and Data Memory.
The Program Memory Dump window and the Data Memory window show the memory loca-
tion contents in hexadecimal format.

• To open the Program Memory Dump window select the command PROGRAM MEMORY
DUMP from the DEBUGGER menu.

Fig. 14.20 - Program Memory Dump window

14 - DEBUGGER

133

Fig. 14.21 - Data Memory Dump window

• To open the Data Memory Dump window select the command DATA MEMORY DUMP from
the DEBUGGER menu.

Options

The Debugger environment allows you to customize the Font and to set the speed in the Ani-
mation mode.

To set the font:

• Select the command OPTIONS>FONT from the DEBUGGER menu.

• The standard Font dialog-box opens allowing you to select the desired font.
Note: the font setting affect only the current window in foreground.

To set the Animation mode speed:

• Select the command OPTIONS > ANIMATION SPEED from the DEBUGGER menu

• Scroll the bar to slower or increase the animation speed in the Animation Speed dialog-box.

Note: There are five speeds available: very slow, slow, medium, fast, very fast.

Fig. 14.22 - Animation Speed dialog-box

FUZZYSTUDIO™ 4.1

134

135

15 - DEVICE PROGRAMMING

The Programmer tool allows you to download the machine code on the device’s memory.
You can also read the memory contents and read/write the ID code of the device.

The Programmer tool works together with the Programming Board supplied with
FUZZYSTUDIO™4 Kit. Be sure that you are using the correct programming board for the
selected target device and that it is correctly installed. Refer to the Appendix B to get more
information about the Programming Board and its installation.

In this chapter you will learn to:

• launch the Programmer

• setting the download options

Moreover, the list of the Programmer messages is supplied.

Device Programming

After the machine code has been successfully completed, it is possible to program the tar-
get device inserted in the apposite board.

Make sure the device has been inserted in the correct way, that the board is turned on and
check if it is connected to the computer’s parallel port. Moreover, make sure the program
has been compiled for the correct device and that the programming board is the suitable one
for that device.

It is possible to choose and customize the operations to carry out during the downloading
phase, specifying the options by using the tab-sheet accessible by means of the Download
Options command. Refer to next paragraph for a detailed description of the available op-
tions.

To start the programming of the device inserted in the socket select the command PRO-
GRAMMER>RUN from the TOOLS menu or click on the apposite toolbar button. The output
window opens displaying the evolution of the downloading phases and the eventual error
messages.

Device programming status messages
The list of possible messages displayed in the output window is the following one:

Blank Check
The protocol has started to verify the device is not programmed.

Blank Checking Device
The device is being verified that it is not programmed.

Device Lock
The protocol has started the lock of the device memory.

Done
The download has been successfully completed.

PROGRAMMER

FUZZYSTUDIO™ 4.1

136

Done with Errors
The download has not been successfully completed because an error occurred.

ID Code Read
The protocol has started to read the ID Code.

ID Code Write
The protocol has started to write the ID Code file into the device memory.

Locking Device
The device memory is being locked .

Memory Read
The protocol has started the dumping phase of the device memory.

Memory Write
The protocol has started the writing phase into the device memory.

Reading ID Code
The ID Code is being read in the device memory.

Reading File
The binary file, containing the program to be written into the device memory, is being read.

Reading Memory
The device memory to generate the dump file is being read.

Testing Lock Bit
The device is being verified that it is not locked.

Writing File
The dump file of the device memory is being generated.

Writing ID Code
The ID Code is being written in the memory device.

Writing Memory
The device memory is being programmed.

15 - DEVICE PROGRAMMING

137

Device programming error messages

Device is Locked
It has been attempted an operation in a locked device. The only operation allowed on a
locked device is the reading of the ID Code.

Device not Blank
The inserted device has not been canceled properly or it is badly placed in the socket.

Error Reading File filename
An error has occurred during the reading of the file containing the binary code to be loaded
into the device memory or during the reading of the ID Code. Check if the file exists or if it is
corrupted; in the case of the ID Code, check if the name and the path have been specified
correctly.

Error Writing File filename
An error has occurred during the reading of the dump file or during the generation of the ID
Code. Check if there is enough space on the disk or if the file name has been correctly speci-
fied.

Out of Memory
A memory error has occurred. Try closing some open programs.

Unable to Lock Device
The device locking has not been successfully completed. The device could be either al-
ready protected or damaged.

Unable to use I/O Ports
You are trying to use the Programmer under Windows NT Operating System or a wrong par-
allel port address has been specified or the port is out of order.

Write Memory Error
An error has occurred during the programming of the memory device. Check if the device
has been correctly inserted or if it is already programmed enabling the Black Check control.
Or the device could be damaged.

Wrong Binary File
The binary code file to be loaded into the device memory is corrupted or the file format is not
correct. Try to generate again the binary code file.

FUZZYSTUDIO™ 4.1

138

Programming Options

Before starting the downloading phase of the device, it is possible to specify the operations
to carry out during this phase.

To open the Download Code Options tab-sheet select the item PROGRAMMER> OPTIONS
from TOOLS menu or click the apposite toolbar button. Choose the “Download Options”
sheet to set the most common actions to be performed during the downloading phase; se-
lect the sheet “Advanced” to perform more advanced settings.

Download Options settings
In this tab it is possible to enable/disable the following actions:

Download Binary File
Memory device programming.

Blank Check
Verify if the device has been erased.

Lock Device
Device read protection.

Fig. 15. 1 - Download Code Options dialog-box

Note: The device reading protection prevents the reading of the Memory Program contents.
A device protected in reading can be unprotected only by erasing the EPROM memory to
exposure to the UV rays. The only operation that it is possible to carry out on a read-
ing-protected device is the reading of the ID code.

15 - DEVICE PROGRAMMING

139

Advanced Settings

In this sheet it is possible to specify the advanced options related to the actions started dur-
ing the programming phase. It is suggested to maintain unchanged the default parameters
in case you are not sure about the changes to carry out.

Fig. 15. 2 - Advanced Settings

Memory Dump File
In this edit-box specify the file name including the file path in which the data read from the
program memory during the downloading phase are to be found. The default name is down-
load.log; if no name is specified the dump file is not created. The data are shown in hexadec-
imal format.

Protocol Delay
This parameter (suitable values are between the range 80� 400) indicates the speed of data
transmission through the parallel port. The default value is 100; specify a greater value if
you want to speed up the transmission. The maximum speed you can specify depends from
the computer’s speed. In case of too high speed the downloading could fail. If you prefer it, it
is possible to calibrate automatically the speed factor by checking the Automatic check-box.

Source ID Code File
In this edit-box you can specify the file name including the path containing the ID Code, in
text format, to write in the apposite memory space of the device. The data are written during
the programming phase of the device but they can be written in an already programmed de-
vice if that area has not already been programmed. If you do not want to write the memory
containing the ID Code do not specify any source file. The total space available is 64 bytes;
the file must be formed by 64 characters: further characters will be ignored.

FUZZYSTUDIO™ 4.1

140

Destination ID Code File
In this edit-box you can specify the file name including the path containing the ID Code, read
from the apposite memory space of the device. In order not to carry out the reading of the ID
Code file, do not specify any destination file. The file format is textual and is shown both in
numeric and ASCII format.

I/O Port
This edit-box is used to specify the address of the parallel port connected to the board. The
default address is 0X378 (LPT1).

APPENDIXES

1

APPENDIXES

FUZZYSTUDIO™ 4.1

2

APPENDIXES

A-1

APPENDIXES

FUZZYSTUDIO™ 4.1

A-2

A-3

A - FEATURES DEPENDENT ON THE TARGET DEVICE

In this Appendix are described the features that change according with the selected target
device of the ST52x4xx family. For each device, the description focuses on the following
items:

• Predefined Variables

• Library Functions parameters

• Peripherals Configuration sheets

• Peripherals Setting Blocks

• Interrupts Blocks

• Memory space and variables number availability

• Stimulus Editor pin names

• Exception list

ST52x420/420Gx Features
Predefined Variables

Read only Variables
CHAN0 Channel 0 A/D converter Address: 1 Read

CHAN1 Channel 1 A/D converter Address: 2 Read

CHAN2 Channel 2 A/D converter Address: 3 Read

CHAN3 Channel 3 A/D converter Address: 4 Read

CHAN4 Channel 4 A/D converter Address: 5 Read

CHAN5 Channel 5 A/D converter Address: 6 Read

CHAN6 Channel 6 A/D converter Address: 7 Read

CHAN7 Channel 7 A/D converter Address: 8 Read

PWM_0_STATUS Timer-PWM 0 Status Register Address: 13 Read

PWM_1_STATUS Timer-PWM 1 Status Register Address: 15 Read

PWM_2_STATUS Timer-PWM 2 Status Register Address: 17 Read

Write only Variables

PWM_0_RELOAD Timer-PWM 0 Reload Regis-
ter Address: 4 Write

PWM_1_RELOAD Timer-PWM 1 Reload Regis-
ter Address: 6 Write

PWM_2_RELOAD Timer-PWM 2 Reload Regis-
ter Address: 8 Write

FUZZYSTUDIO™ 4.1

A-4

Other Predefined Variables
The following Predefined Variables are write-only variables to be used only in Assembler
Block with the instructions LDCE and LDCR and in Arithmetic Block with the assignation op-
erator (=) where the variable must be written only on the left side. They are used to the chip
configuration.

Read-Write Variables

PORT_A
Port A Input Register Address 9 Read

Port A Output Register Address 0 Write

PORT_B
Port B Input Register Address 10 Read

Port B Output Register Address 1 Write

PORT_C
Port C Input Register Address 11 Read

Port C Output Register Address 2 Write

PWM_0_COUNT
Timer-PWM 0 Counter Address 12 Read

Timer-PWM 0 Counter Address3 Write

PWM_1_COUNT
Timer-PWM 1 Counter Address 14 Read

Timer-PWM 1 Counter Address 5 Write

PWM_2_COUNT
Timer-PWM 2 Counter Address 16 Read

Timer-PWM 2 Counter Address 7 Write

REG_CONF0 Configuration Register 0 Address 0 (Write)

REG_CONF1 Configuration Register 1 Address 1 (Write)

REG_CONF2 Configuration Register 2 Address 2 (Write)

REG_CONF3 Configuration Register 3 Address 3 (Write)

REG_CONF4 Configuration Register 4 Address 4 (Write)

REG_CONF5 Configuration Register 5 Address 5 (Write)

REG_CONF6 Configuration Register 6 Address 6 (Write)

REG_CONF7 Configuration Register 7 Address 7 (Write)

REG_CONF8 Configuration Register 8 Address 8 (Write)

REG_CONF9 Configuration Register 9 Address 9 (Write)

REG_CONF10 Configuration Register 10 Address 10 (Write)

REG_CONF11 Configuration Register 11 Address 11 (Write)

REG_CONF12 Configuration Register 12 Address 12 (Write)

REG_CONF13 Configuration Register 13 Address 13 (Write)

REG_CONF14 Configuration Register 14 Address 14 (Write)

REG_CONF15 Configuration Register 15 Address 15 (Write)

REG_CONF16 Configuration Register 16 Address 16 (Write)

A - FEATURES DEPENDENT ON THE TARGET DEVICE

5A -5

DeviceStatus() Function Parameters

The DeviceStatus library function arguments are characterized by a peripheral identifier
and one parameter:

DeviceStatus(periph, param);

These parameters depend on the selected target device. In the ST52x420/420Gx they can
be the following:

periph:

PWM_0 identifies the PWM/Timer 0
PWM_1 identifies the PWM/Timer 1
PWM_2 identifies the PWM/Timer 2

param:

SET identifies the Set status of the PWM/Timer
RESET identifies the Reset status of the PWM/Timer
START identifies the Start status of the PWM/Timer
STOP identifies the Stop status of the PWM/Timer
Note: The parameters must be expressed in capital letters

DeviceSet() function parameters

The DeviceSet library function arguments are characterized by a peripheral identifier and
one parameter:

DeviceSet(periph, param1);

These parameters depend on the selected target device. In the ST52x420/420Gx they can
be the following:

periph:

ADC identifies the A/D Converter
PWM_0 identifies the PWM/Timer 0
PWM_1 identifies the PWM/Timer 1
PWM_2 identifies the PWM/Timer 2
START_PWM_TIMER identifies all the PWM in order to start them simulaneously

param1:

Related to the the ADC, PWM_0, PWM_1, PWM_2 first parameter:

START resets the PWM/Timer or A/D Converter
STOP stops the PWM/Timer or A/D Converter
SET sets the PWM/Timers
RESET resets the PWM/Timer or A/D Converter

FUZZYSTUDIO™ 4.1

A-6

Related to the START_PWM_TIMERS first parameter:

1 identifies the PWM/Timer 0
2 identifies the PWM/Timer 1
4 identifies the PWM/Timer 2

The PWM/Timers to be started are identified by the sum of parameters or separating them
with | (or)

param2:

Related to the the ADC first parameter:

0-n identifies the AD channel

param3:

Related to the the ADC first parameter:

SINGLE sets the conversion mode to a single conversion
CONTINUOUS sets the conversion mode as continuous conversion

param4:

Related to the the ADC first parameter:

SINGLE sets the channel mode to the single channel conversion
SEQUENCE sets the channel mode in the sequence of channel conversion

param5:

Related to the the ADC first parameter:

FULL sets the A/D converter frequency at the full speed
DIVIDED sets the A/D converter frequency at the half speed

In PWM mode the SET parameter is equivalent to the START one and the RESET parame-
ter to the STOP one. In Timer when the Start command is configured as external the SET pa-
rameter allows to put the peripheral in Set mode waiting the external start signal.

Note: some parameters can be omitted according to the other arguments and the action to
perform. The parameters must be expressed in capital letters.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-7

Interrupt Related Functions

The Standard Library supplies the following functions:

IrqEnable(); enables globally the interrupts

IrqDisable(); disables globally the interrupts

IrqReset(int1, int2,…..); resets the pending interrupts

IrqEnableMask(int1, int2,…..); enables the interrupts selectively

IrqPriority(int1, int2,…..); sets the interrupts priority order

The interrupts identifiers int1, int2,….., can be the following:

EXTERNAL identifies the External interrupt

AD_CONVERTER identifies the A/D Converter interrupt

PWMTIMER0 identifies the PWM/Timer 0 interrupt

PWMTIMER1 identifies the PWM/Timer 1 interrupt

PWMTIMER2 identifies the PWM/Timer 2 interrupt

The IrqReset function arguments are the identifiers of the pending interrupts to be reset:
missing interrupts are not reset.

The IrqEnableMask function arguments are the identifiers of the interrupts to be enabled:
missing interrupts are disabled.

The IrqPriority function arguments are the identifiers of all the interrupt (except the external
interrupt that have fixed top level priority) written with the priority order.

Note: The identifiers must be expressed in capital letters.

FUZZYSTUDIO™ 4.1

A-8

Fig. A.1 - Chip Clock sheet

Peripherals Configuration Sheets

The Peripherals Configuration property-sheet for ST52x420/420Gx is composed by the fol-
lowing pages:

• Chip Clock

• Port Pins

• A/D Converter

• Watchdog

• PWM-Timer 0

• PWM-Timer 1

• PWM-Timer 2

The setting of the chip clock and of the port pins involves some changes in the configura-
tion parameters of the other pages. For example, changing the device frequency, the
available counting times for Watchdog are modified as well as some parameters of the
PWM-Timers. Another example: the availability of the A/D channels number depends on
the pins configured as analog input. For this reason, it is better to set the chip frequency
and the port pins before the peripherals configuration.

Chip Clock sheet
In this page you can find the controls for the setting of the device clock frequency. The avail-
able frequencies in the ST52x420/Gx device are in the range 1 MHz up to 20 MHz.

To set the frequency:

• select from the drop-down list the desired frequency
or

• write the desired frequency in the apposite text box
Default clock frequency is 5 MHz.

Changing the frequency will affect the configuration of the PWM-Timers Prescaler, Reload
registers (if used) and the Watchdog counting time.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

9A -9

Port Pins sheet
The Port Pin sheet shows the layout of the ST52x420/420Gx device indicating the pins and
the associated functionalities (input, output or alternate function).

Each pin is a button to change the configuration of the pin itself just clicking on them: the cur-
rent configured function is highlighted and rotates through the available ones. Moreover,
you can directly choose the pin function by clicking on the function name next to the pin.

Some pins cannot be configured (such as TEST or Vdd) and are shown just for having a
complete look of the device: actually the pin position is the same as the real device.

Fig. A.2 - Port Pins sheet

The check-box “Display warning message” allows to disable the warning messages when
configuring the pins. An example of warning messages is the one that warns, when you pass
from the configuration of the pin as analog input to digital input or output, that the predefined
variable related to the A/D channel will not be available.

FUZZYSTUDIO™ 4.1

A-10

Watchdog sheet
The only setting to perform is the choice of the counting time of the Watchdog. This can be
achieved selecting the time in milliseconds nearest to the desired counting time from the
available drop-down list-box.

Fig. A.3 - Watchdog sheet

Note: The contents of the list-box depends on the selected chip clock frequency.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

11A -11

PWM-Timer 0 sheet
The PWM-Timer sheet is composed by several sections, each allowing the configuration of
a peripheral feature.

Working Mode and Frequency Setting sections

The first choice you should perform is the Working Mode:

• Select PWM if you want the peripheral to work as PWM controller

• Select TIMER if you want the peripheral to work as Timer or events counter

When the peripheral is set in PWM mode, the output signal has a fixed period whose
duty-cycle can be modified. The period is fixed by the Prescaler and by the contents of
the Reload register; the duty-cycle is modified run-time by changing the Timer Counter
register. Setting a value in the Reload register you can adjust the desired working fre-
quency, but you may loose resolution because the counting range starts from the Reload
value up to 255 (see data-sheet for further information). You can fix the control period by
specifying the Working Frequency in the “PWM-Timer frequency setting” section.

• Check the box “Allow resolution change” if you want to use the Reload value

• Uncheck it if you don’t want to loose resolution.

If you allow the resolution change, you can specify directly the Working Frequency in
Hz, writing the value in the apposite text-box. The values of the Prescaler Factor and of
the Reload register are automatically computed and shown in the relative boxes. The
specified frequency is approximated to the nearest value computed with integer values
of the Prescaler and the Reload register.

Fig. A.4 - PWM-Timer 0 sheet

FUZZYSTUDIO™ 4.1

A-12

If you are using an external clock to drive the peripheral, the Working Frequency cannot
be set directly by the user, because the clock frequency is not known. In this case the
Working frequency text box is disabled and the Frequency Division factor list and the Re-
load Value text-boxes are enabled, in order to allow you to specify by yourself the two
parameters.
If you don’t allow the resolution change, you can only modify the Prescaler Factor, selecting
it in the apposite drop-down list. The allowed factors are powers of two, up to 65536; doing
so you can get 17 different Working Frequencies.

When the peripheral is set in Timer Mode, the signal has fixed the duty-cycle and the fre-
quency depends on the Prescaler and Timer Counter register contents. The Reload register
is not used. The frequency of the signal is equal to the clock (internal or external) frequency
divided by the Prescaler and Timer Counter register values. You can fix the Division Factor
of the Prescaler by specifying it in the “PWM-Timer frequency setting” section.

TIMEROUT Waveform section
The TIMEROUT Waveform section is disabled when the PWM mode is selected. This sec-
tion allows to select the Timer output modality: square wave or impulse; select one of them
by clicking the radiobutton next to the waveform figure.

When the square wave is selected, the Timer output will have a 50% duty-cycle. Otherwise
the Timer output will have an impulse as long as the clock period multiplied by the Prescaler
factor (see data-sheet for further information).

Clock Source section
This section allows to choose the input of the Prescaler: the internal clock, whose frequency
is equal to the oscillator frequency, or the external clock applied on the T0CLK pin. Click the
radiobutton next to the desired option to select one of them.

Note: When in PWM mode, if external clock is selected, the PWM-Timer frequency setting
section changes as described previously

Interrupt Source section
This section allows you to select the source of the PWM-Timer 0 interrupt. The available
choices are:

• Timer Stop: when the peripheral is stopped by the program or by an external signal, in PWM
or Timer mode.

• TIMEROUT rising edge: when the signal generated by the peripheral has the transition from
high to low. The interrupt request is generated when the counter starts and when the end of
count is reached.

• TIMEROUT falling edge: when the signal generated by the peripheral has the transition
from low to high. The interrupt request is generated when the half-count is reached.

• TIMEROUT falling and rising edge: selecting both previous sources, the interrupt request is
generated on both edges of the TIMEROUT signal.

To select one or more sources, check the corresponding check-boxes in the Interrupt
Source section.

Note: Selecting Timer Stop source, the other sources cannot be activated and vice-versa,
so the related check-boxes are disabled. If no interrupt source has been selected, the inter-
rupt on Timer Stop is automatically assumed: when you open again the sheet, you will find
this option automatically selected.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-13

Start Signal and Reset Signal sections
These sections are organized in the same way. They are used to set the source of the
Start/Stop and Set/Reset signals of the PWM-Timer 0.

A couple of check-boxes (Internal and/or external) and a couple of radiobuttons (level or
edge) compose each section.

The Start/Stop and the Set/Reset signals can be generated by the program by using the pe-
ripheral block (Internal), or by signals applied on the external pins (T0STRT and T0RES).

• Check the “Internal” check-box if you want to apply the signals from the program.

• Check the “External” check-box if you want to apply the signals to the external pins.

• Check both check-boxes if you want to apply the signals in both ways.

When the External mode is selected, the signal can be specified as edge sensitive or
level sensitive. When the Internal mode is selected, only the level sensitive mode can be
set, so the peripheral block acts in on/off way.

• Click the “Level” radiobutton if you want to toggle the peripheral according to the level of the
signal.

• Click the “Edge” radiobutton if you want to toggle the peripheral on the rising edges of the
signal (when only External mode is selected).

PWM-Timer 1 & 2 sheets
The configuration sheets for the PWM-Timer 1 and 2 are the same as the PWM-Timer 0
one. Because these PWM-Timers cannot be driven from the external pins, all the sections
related to the configuration of the external functions are disabled. The disabled sections
are:

• Clock Source

• Start Signal

• Reset Signal

The other section works normally as described previously for the PWM-Timer 0.

A/D Converter sheet
To configure the A/D Converter you have to specify the following characteristics:

• The conversion mode

• The channel conversion sequence

• The channel or the sequence of the channels to be converted.

In the “Conversion” section click:

• “Single” radiobutton if you want to perform a single conversion cycle

• “Continuous” radiobutton if you want the peripheral to work continuously until it is stopped.

Note: When “Single” mode is selected, after the conversion, you must start again the pe-
ripheral, with the peripheral block, if you want another conversion cycle.

In the “Channel” section click:

• “Single” radiobutton if you want the conversion of the channel specified in the “Channel to
be converted” section.

• “Sequence” radiobutton if you want the conversion of the channels sequence from the first
one up to the one specified in the “Last Channel to be converted” section.

FUZZYSTUDIO™ 4.1

A-14

The next section is called in two ways, according with the previous settings:

• “Channel to be converted” if the “Single” radiobutton has been selected in the “Channel”
section.

• “Last Channel to be converted” if the “Sequence” radiobutton has been selected in the
“Channel” section.

In both cases, you have to select the channel number from the drop-down list-box avail-
able in this section.
Note: The contents of the channels numbers list depends on the pin configured as analog
input: some A/D configuration are not allowed if the pins have not been configured correctly.
If no pin has been configured as analog input, the entire sheet is disabled.

Fig. A.5 - A/D Converter sheet

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-15

Peripherals Setting Blocks

The Peripherals Setting Blocks for ST52x420/420Gx set the following peripherals:

• A/D Converter

• Watchdog

• PWM-Timer 0

• PWM-Timer 1

• PWM-Timer 2

In the following you can find the description of each block.

A/D Converter setting block
The A/D setting block is the most complex, because it allows to change run-time the
whole configuration of the peripheral. The sections that you can find in the dialog-box al-
lows to perform the following actions:

• Start or Stop the peripheral

• Set or Reset the peripheral

• Change the conversion mode

• Change the channel conversion sequence

• Choose the channel or the sequence of the channels to be converted

• Change the A/D working frequency

To Start/Stop the peripheral, click the corresponding radiobutton at the top of the dialog
box.

If you intend to change run-time the A/D converter configuration, uncheck the “Use De-
fault Configuration” check-box and follow the instructions described below:

In the “Conversion” section click:

• “Single” radiobutton if you want to perform a single conversion cycle

• “Continuous” radiobutton if you want the peripheral to work continuously until it is stopped.

Note: When “Single” mode is selected, after the conversion, you must start again the pe-
ripheral, with the peripheral block, if you want another conversion cycle.

In the “Channel” section click:

• “Single” radiobutton if you want the conversion of the channel specified in the “Channel to
be converted” section.

• “Sequence” radiobutton if you want the conversion of the channels sequence from the first
one up to the one specified in the “Last Channel to be converted” section.

The next section is called in two ways, according with the previous settings:

• “Channel to be converted” if the “Single” radiobutton has been selected in the “Channel”
section.

• “Last Channel to be converted” if the “Sequence” radiobutton has been selected in the
“Channel” section.

In both cases, you have to select the channel number from the drop-down list-box avail-
able in this section.
Note: The contents of the channels’ numbers list depends on the pin configured as analog
input: some A/D configurations are not allowed if the pins have not been configured cor-
rectly. If no pin has been configured as analog input, the entire sheet is disabled.

FUZZYSTUDIO™ 4.1

A-16

The A/D Converter can work both with the chip clock frequency or with half of this frequency.
Check the apposite check-box if you want to slower to the half the A/D frequency and con-
version time.

Fig. A.6 - A/D Converter Setting Block

Fig. A.7 - Watchdog Setting block

Watchdog Setting block
The Watchdog setting block is used to Start/Refresh the Watchdog counter or to disable the
peripheral.

• Click the “Start/Refresh” radiobutton if you want to start the peripheral of refresh the counter
to avoid the device reset.

• Click the “Disable” radiobutton to disable the peripheral.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-17

PWM-Timer 0, 1 & 2 setting blocks
All the PWM-Timer setting blocks are the same; each of them is used to Start/Stop or
Set/Reset the corresponding peripheral.

• To Start/Stop or Reset the peripheral, click the corresponding radiobutton.

Fig. A.8 - PWM-Timer Setting block

Note: The available radiobuttons are the only allowed to the peripheral settings. For in-
stance, if the Set/Reset and Start/Stop signal of the PWM/Timer0 are set bothe as external,
none of the radiobuttons are made available. Moreover, when the PWM mode is set for the
peripheral, the only available radiobuttons are the Start and Reset radiobuttons.

In addition, with the PWM-Timers setting block you can start two or all the PWM-Timers at
the same time by checking the corresponding check-box.

Note: If the PWM/Timer0 is set with the Start/Stop or Set/reset signals configured as exter-
nal, the corresponding check-box is disabled.

Fig. A.9 - PWM-Timers Setting Block

FUZZYSTUDIO™ 4.1

A-18

Blocks Related to the Interrupts

The interrupts sources managed in the ST52x420/420Gx are the following:

• External Interrupt

• A/D Converter Interrupt

• PWM-Timer 0 Interrupt

• PWM-Timer 1 Interrupt

• PWM-Timer 2 Interrupt

Each interrupt can be recognized by its name in the list-boxes (see related chapters in
this manual).

All interrupts pending can be reset and all sources can be masked. The priority level of
the External Interrupt is fixed to the maximum and cannot be changed. The default prior-
ity order is the following:

• External Interrupt

• PWM-Timer 0

• PWM-Timer 1

• PWM-Timer 2

• A/D Converter

Note: All interrupts are disabled by default.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-19

Memory Spaces

The available memory spaces in the ST52x420/420Gx devices are the following:

ST52x420 ST52x420G0 ST52x420G1 ST52x420G2
Program Memory (EPROM) 4 Kbytes 1 Kbyte 2 kbytes 4 Kbytes
Program Memory available
for MF 1 Kbyte 1 Kbyte 1 Kbyte 1 Kbyte

Data Memory 128 bytes 128 bytes 128 bytes 128 bytes

These resources allow you to define:

• programs whose length should be up to 4 Kbytes

• up to 335 Membership Functions

The Program Memory shares data tables, Membership Functions data and the program in-
struction; for this reason, the effective available space for program instruction depends on
the memory space used by data and vice-versa.

The number of the user variables depends not only on the available RAM location, but also
on the stack levels used by the CALL instructions and by the nested interrupt requests.
Actually, each jump to a subroutine or interrupt service routine uses as system stack two
RAM locations, starting from the last ones in the RAM memory space. To avoid overlapping
between data and system stack, the number of defined variables should be less than the re-
maining memory locations (see ST52x420 datasheet for further details).

In addition, the first two RAM locations are used by the Compiler macros as working regis-
ter, so the total variables number that can be defined is lowered by two.

Example: if your program has max 5 levels of nested calls to subroutine and interrupts and
the Compiler reserves two RAM locations. The available variables number is:

128 – (5 * 2) – 2 = 116 variables available.

FUZZYSTUDIO™ 4.1

A-20

Pin names to be used in the Stimulus file
In the following you can find the list of the ST52x420/420Gx pins names used with the stimu-
lus file.

PA0 Port A pin 0; also used for driving T0RES signal
PA1 Port A pin 1; also used for driving T0OUTN signal
PA2 Port A pin 2; also used for driving T1OUTN signal
PA3 Port A pin 3; also used for driving T2OUTN signal
PA4 Port A pin 4; also used for driving T0STRT signal
PA5 Port A pin 5; also used for driving T0CLK signal
PA6 Port A pin 6
PA7 Port A pin 7
PB0 Port B pin 0
PB1 Port B pin 1
PB2 Port B pin 2
PB3 Port B pin 3
PB4 Port B pin 4
PB5 Port B pin 5
PB6 Port B pin 6
PC0 Port C pin 0
PC1 Port C pin 1
PC2 Port C pin 2
PC3 Port C pin 3
Ain0 Analog input channel 0
Ain1 Analog input channel 1
Ain2 Analog input channel 2
Ain3 Analog input channel 3
Ain4 Analog input channel 4
Ain5 Analog input channel 5
Ain6 Analog input channel 6
Ain7 Analog input channel 7

Note: The signal names are case-sensitive: Ain0 is different from ain0 or AIN0.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-21

001 RAM address out of range [0-127]
002 EPROM address out of range [0-4095]
003 Input register address out of range [0-17]
004 Output register address out of range [0-8]
005 Configuration register address out of range [0-16]
006 Fuzzy input register address out of range [0-7]
007 EPROM location pointed by PC does not correspond to any instruction code
008 The reset of a not pending interrupt has been tried
009 The Watchdog has been disabled when already disabled
010 Division by zero
011 Pin is set in input mode but there is no signal that drives it
012 Pin is set in output mode but it is forced by a signal defined for it
013 Inconsistent binary file
014 Timer 0 clock is set as external but the pin PA5 is set in output mode
015 Timer 0 reset is set as external but the pin PA0 is set in output mode
016 Timer 0 start/stop is set as external but the pin PA4 is set in output mode
017 Timer 0 clock is set as external but the signal defined for pin PA5 is not a clock
018 Pin is configured as PWM/Timer output but it is set in input mode

019 The A/D Converter tried to convert the i-th analog signal but the pin PBi is set in output
mode

020 The A/D Converter tried to convert the i-th analog signal but the pin PBi is set as Digital
I/O

021 The A/D Converter tried to convert the seventh analog signal but the pin Pin 18 (PA7 or
PB7) is set to belong to the port A

022 WAIT instruction has been executed but all interrupt sources are disabled

023 The use of an EPROM location has been tried but the PGSET instruction was not spec-
ified before.

024 The use of an EPROM location has been tried but an instruction different from PGSET
or an interrupt asserviment has modified the previously set page.

Debugger Exceptions list

In the following you can find the list of the Exceptions message and codes related to
ST52x420/420Gx emulator.

FUZZYSTUDIO™ 4.1

A-22

ST52x430Kx Features

Predefined Variables

Read only Variables
CHAN0 Channel 0 A/D converter Address: 1 Read

CHAN1 Channel 1 A/D converter Address: 2 Read

CHAN2 Channel 2 A/D converter Address: 3 Read

CHAN3 Channel 3 A/D converter Address: 4 Read

CHAN4 Channel 4 A/D converter Address: 5 Read

CHAN5 Channel 5 A/D converter Address: 6 Read

CHAN6 Channel 6 A/D converter Address: 7 Read

CHAN7 Channel 7 A/D converter Address: 8 Read

PWM_0_STATUS Timer-PWM 0 Status Register Address: 13 Read

PWM_1_STATUS Timer-PWM 1 Status Register Address: 15 Read

PWM_2_STATUS Timer-PWM 2 Status Register Address: 17 Read

SCI_RX_DATA SCI received data Address: 18 Read

SCI_STATUS SCI Status Register Address: 19 Read

Write only Variables

PWM_0_RELOAD Timer-PWM 0 Reload Regis-
ter Address: 4 Write

PWM_1_RELOAD Timer-PWM 1 Reload Regis-
ter Address: 6 Write

PWM_2_RELOAD Timer-PWM 2 Reload Regis-
ter Address: 8 Write

SCI_TX_DATA SCI transmitted data Address: 9 Write

Read-Write Variables

PORT_A
Port A Input Register Address 9 Read

Port A Output Register Address 0 Write

PORT_B
Port B Input Register Address 10 Read

Port B Output Register Address 1 Write

PORT_C
Port C Input Register Address 11 Read

Port C Output Register Address 2 Write

PWM_0_COUNT
Timer-PWM 0 Counter Address 12 Read

Timer-PWM 0 Counter Address3 Write

PWM_1_COUNT
Timer-PWM 1 Counter Address 14 Read

Timer-PWM 1 Counter Address 5 Write

PWM_2_COUNT
Timer-PWM 2 Counter Address 16 Read

Timer-PWM 2 Counter Address 7 Write

A - FEATURES DEPENDENT ON THE TARGET DEVICE

23A-23

Other Predefined variables:
The following Predefined Variable are write-only variables to be used only in Assembler
Block with the instructions LDCE and LDCR and in Arithmetic Block with the assignation op-
erator (=) where the variable must be written only on the left side. They are used to the chip
configuration.

REG_CONF0 Configuration Register 0 Address 0 (Write)

REG_CONF1 Configuration Register 1 Address 1 (Write)

REG_CONF2 Configuration Register 2 Address 2 (Write)

REG_CONF3 Configuration Register 3 Address 3 (Write)

REG_CONF4 Configuration Register 4 Address 4 (Write)

REG_CONF5 Configuration Register 5 Address 5 (Write)

REG_CONF6 Configuration Register 6 Address 6 (Write)

REG_CONF7 Configuration Register 7 Address 7 (Write)

REG_CONF8 Configuration Register 8 Address 8 (Write)

REG_CONF9 Configuration Register 9 Address 9 (Write)

REG_CONF10 Configuration Register 10 Address 10 (Write)

REG_CONF11 Configuration Register 11 Address 11 (Write)

REG_CONF12 Configuration Register 12 Address 12 (Write)

REG_CONF13 Configuration Register 13 Address 13 (Write)

REG_CONF14 Configuration Register 14 Address 14 (Write)

REG_CONF15 Configuration Register 15 Address 15 (Write)

REG_CONF16 Configuration Register 16 Address 16 (Write)

REG_CONF17 Configuration Register 17 Address 17 (Write)

REG_CONF18 Configuration Register 18 Address 18 (Write)

REG_CONF19 Configuration Register 19 Address 19 (Write)

REG_CONF20 Configuration Register 20 Address 20 (Write)

FUZZYSTUDIO™ 4.1

A-24

DeviceStatus(periph, param);

These parameters depend on the selected target device. In the ST52x430Kx they can be the
following:

periph:

PWM_0 identifies the PWM/Timer 0
PWM_1 identifies the PWM/Timer 1
PWM_2 identifies the PWM/Timer 2
SCI identifies the SCI peripheral

param:

SET identifies the Set status of the PWM/Timer
RESET identifies the Reset status of the PWM/Timer
START identifies the Start status of the PWM/Timer
STOP identifies the Stop status of the PWM/Timer

Related to the SCI first parameter:

TX_END identifies the transmission end flag
TX_EMPTY identifies the transmission buffer empty flag
NINTH_BIT identifies the received ninth data bit
OVERRUN identifies the overrun error condition flag
RX_FULL identifies the reception register full flag
FRAME_ERR identifies the frame error flag
NOISE_ERR identifies the noise error flag

Note: The parameter must be expressed in capital letters.

DeviceStatus() Function Parameters

The DeviceStatus library function arguments are characterized by a peripheral identifier
and one parameter:

A - FEATURES DEPENDENT ON THE TARGET DEVICE

25A-25

DeviceSet() function parameters

The DeviceSet library function arguments are characterized by a peripheral identifier and
one parameter:

DeviceSet(periph, param1, param2, param3, param4);

These parameters depend on the selected target device. In the ST52x430Kx they can be the
following:

periph:

ADC identifies the A/D Converter
PWM_0 identifies the PWM/Timer 0
PWM_1 identifies the PWM/Timer 1
PWM_2 identifies the PWM/Timer 2
START_PWM_TIMER identifies all the PWM in order to start them simulaneously

param1:

Related to the the ADC, PWM_0, PWM_1, PWM_2 first parameter:

START resets the PWM/Timer or A/D Converter
STOP stops the PWM/Timer or A/D Converter
SET sets the PWM/Timers
RESET resets the PWM/Timer or A/D Converter

Related to the START_PWM_TIMERS first parameter:

1 identifies the PWM/Timer 0

2 identifies the PWM/Timer 1

4 identifies the PWM/Timer 2

The PWM/Timers to be started are identified by the sum of parameters or separating them
with | (or)

Related to the SCI first parameter:

TX_START starts serial transmission
TX_STOP stops serial transmission
NONE indicates no action in transmission

Param2:

Related to the SCI first parameter:

RX_START starts serial reception
RX_STOP stops serial reception
NONE indicates no action in reception

Related to the the ADC first parameter:

0-n identifies the AD channel

FUZZYSTUDIO™ 4.1

A-26

Param3:

Related to the SCI first parameter:

NINTH_BIT_0 sets the ninth data bit to 0
NINTH_BIT_1 sets the ninth data bit to 1

Related to the the ADC first parameter:

SINGLE sets the conversion mode to a single conversion
CONTINUOUS sets the conversion mode as continuous conversion

param4:

Related to the the ADC first parameter:

SINGLE sets the channel mode to the single channel conversion
SEQUENCE sets the channel mode in the sequence of channel conversion

param5:

Related to the the ADC first parameter:

FULL sets the A/D converter frequency at the full speed
DIVIDED sets the A/D converter frequency at the half speed

In PWM mode the SET parameter is equivalent to the START one and the RESET parame-
ter to the STOP one. In Timer when the Start command is configured as external the SET pa-
rameter allows to put the peripheral in Set mode waiting the external start signal.

Note: Some parameters can be omitted according to the other arguments and the action to
perform. The parameters must be expressed in capital letters.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-27

Interrupt Related Functions

The Standard Library supplies the following functions:

IrqEnable(); enables globally the interrupts

IrqDisable(); disables globally the interrupts

IrqReset(int1, int2,…..); resets the pending interrupts

IrqEnableMask(int1, int2,…..); enables the interrupts selectively

IrqPriority(int1, int2,…..); sets the interrupts priority order

The interrupts identifiers int1, int2,….., can be the following:

EXTERNAL identifies the External interrupt

AD_CONVERTER identifies the A/D Converter interrupt

PWMTIMER0 identifies the PWM/Timer 0 interrupt

PWMTIMER1 identifies the PWM/Timer 1 interrupt

PWMTIMER2 identifies the PWM/Timer 2 interrupt

SCI identifies the SCI interrupt

The IrqReset function arguments are the identifiers of the pending interrupts to be reset:
missing interrupts are not reset.

The IrqEnableMask function arguments are the identifiers of the interrupts to be enabled:
missing interrupts are disabled. In addition it is possible to further specify one of these iden-
tifiers to set the polarity of the external interrupt (if missing default is assumed):

RISING sets the interrupt polarity on the rising edge of the applied signal

FALLING sets the interrupt polarity on the falling edge of the applied signal

The IrqPriority function arguments are the identifiers of all the interrupt (except the external
interrupt that have fixed top level priority) written with the priority order.

Note: The identifiers must be expressed in capital letters.

FUZZYSTUDIO™ 4.1

A-28

Peripherals Configuration Sheets

The Peripherals Configuration property-sheet for ST52x430Kx is composed by the follow-
ing pages:

• Chip Clock

• Port Pins

• A/D Converter

• Watchdog

• PWM-Timer 0

• PWM-Timer 1

• PWM-Timer 2

• SCI

The setting of the chip clock and of the port pins involves some changes in the configura-
tion parameters of the other pages. For example, changing the device frequency, the
available counting times for Watchdog are modified as well as some parameters of the
PWM-Timers. Another example: the availability of the A/D channels number depends on
the pins configured as analog input. For this reason, it is better to set the chip frequency
and the port pins before the peripherals configuration.

Chip Clock sheet
In this page you can find the controls for the setting of the device clock frequency. The avail-
able frequencies in the ST52x430Kx device are in the range 1 MHz up to 20 MHz.

To set the frequency:

• select from the drop-down list the desired frequency
or

• write the desired frequency in the apposite text box

Fig.A.10- Chip Clock sheet

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-29

Default clock frequency is 5 MHz.

Changing the frequency will affect the configuration of the PWM-Timers Prescaler, Reload
registers (if used) and the Watchdog counting time.

Port Pins sheet
The Port Pin sheet shows the layout of the ST52x430Kx device indicating the pins and the
associated functionalities (input, output or alternate function).

Each pin is a button to change the configuration of the pin itself just clicking on them: the cur-

Fig. A.11 - Port pins sheet

rent configured function is highlighted and rotates through the available ones. Moreover,
you can directly choose the pin function by clicking on the function name next to the pin.

Some pins cannot be configured (such as TEST or Vdd) and are shown just for having a
complete look of the device: actually the pin position is the same as the real device.

The check-box “Display warning message” allows to disable the warning messages when
configuring the pins. An example of warning messages is the one that warns, when you pass
from the configuration of the pin as analog input to digital input or output, that the predefined
variable related to the A/D channel will not be available.

FUZZYSTUDIO™ 4.1

A-30

Watchdog sheet
The only setting to perform is the choice of the counting time of the Watchdog. This can be
achieved selecting the time in milliseconds nearest to the desired counting time from the
available drop-down list-box.

Note: The contents of the list-box depends on the selected chip clock frequency.

Fig.A.12 - Watchdog sheet

PWM-Timer 0 sheet
The PWM-Timer sheet is composed by several sections, each allowing the configuration of
a peripheral feature.

Working Mode and Frequency Setting sections

The first choice you should perform is the Working Mode:

• Select PWM if you want the peripheral to work as PWM controller

• Select TIMER if you want the peripheral to work as Timer or events counter

When the peripheral is set in PWM mode, the output signal has a fixed period whose
duty-cycle can be modified. The period is fixed by the Prescaler and by the contents of
the Reload register; the duty-cycle is modified run-time by changing the Timer Counter
register. Setting a value in the Reload register you can adjust the desired working fre-
quency, but you may loose resolution because the counting range starts from the Reload
value up to 255 (see data-sheet for further information). You can fix the control period by
specifying the Working Frequency in the “PWM-Timer frequency setting” section.

• Check the box “Allow resolution change” if you want to use the Reload value

• Uncheck it if you don’t want to loose resolution.

If you allow the resolution change, you can specify directly the Working Frequency in Hz,
writing the value in the apposite text-box. The values of the Prescaler Factor and of the
Reload register are automatically computed and shown in the relative boxes. The speci-
fied frequency is approximated to the nearest value computed with integer values of the
Prescaler and the Reload register.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-31

If you are using an external clock to drive the peripheral, the Working Frequency cannot
be set directly by the user, because the clock frequency is not known. In this case the
Working frequency text box is disabled and the Frequency Division factor list and the Re-
load Value text-boxes are enabled, in order to allow you to specify by yourself the two pa-
rameters.

Fig. A.13 - PWM-Timer 0 sheet

If you don’t allow the resolution change, you can only modify the Prescaler Factor, selecting
it in the apposite drop-down list. The allowed factors are powers of two, up to 65536; doing
so you can get 17 different Working Frequencies.

When the peripheral is set in Timer Mode, the signal has fixed the duty-cycle and the fre-
quency depends on the Prescaler and Timer Counter register contents. The Reload register
is not used. The frequency of the signal is equal to the clock (internal or external) frequency
divided by the Prescaler and Timer Counter register values. You can fix the Division Factor
of the Prescaler by specifying it in the “PWM-Timer frequency setting” section.

TIMEROUT Waveform section
The TIMEROUT Waveform section is disabled when the PWM mode is selected. This sec-
tion allows to select the Timer output modality: square wave or impulse; select one of them
by clicking the radiobutton next to the waveform figure.

When the square wave is selected, the Timer output will have a 50% duty-cycle. Otherwise
the Timer output will have an impulse as long as the clock period multiplied by the Prescaler
factor (see ST52x430 data-sheet for further information).

FUZZYSTUDIO™ 4.1

A-32

Clock Source section
This section allows to choose the input of the Prescaler: the internal clock, whose frequency
is equal to the oscillator frequency, or the external clock applied on the T0CLK pin. Click the
radiobutton next to the desired option to select one of them.

Note: When in PWM mode, if external clock is selected, the PWM-Timer frequency setting
section changes as described previously.

Interrupt Source section
This section allows you to select the source of the PWM-Timer 0 interrupt. The available
choices are:

• Timer Stop: when the peripheral is stopped by the program or by an external signal, in PWM
or Timer mode.

• TIMEROUT rising edge: when the signal generated by the peripheral has the transition from
high to low. The interrupt request is generated when the counter starts and when the end of
count is reached.

• TIMEROUT falling edge: when the signal generated by the peripheral has the transition
from low to high. The interrupt request is generated when the half-count is reached.

• TIMEROUT falling and rising edge: selecting both previous sources, the interrupt request is
generated on both edges of the TIMEROUT signal.

To select one or more sources, check the corresponding check-boxes in the Interrupt
Source section.
Note: Selecting Timer Stop source, the other sources cannot be activated and vice-versa,
so the related check-boxes are disabled. If no interrupt source has been selected, the inter-
rupt on Timer Stop is automatically assumed: when you open again the sheet, you will find
this option automatically selected.

Start Signal and Reset Signal sections
These sections are organized in the same way. They are used to set the source of the
Start/Stop and Set/Reset signals of the PWM-Timer 0.

A couple of check-boxes (Internal and/or external) and a couple of radiobuttons (level or
edge) compose each section.

The Start/Stop and the Set/Reset signals can be generated by the program by using the pe-
ripheral block (Internal), or by signals applied on the external pins (T0STRT and T0RES).

• Check the “Internal” check-box if you want to apply the signals from the program.

• Check the “External” check-box if you want to apply the signals to the external pins.

• Check both check-boxes if you want to apply the signals in both ways.

When the External mode is selected, the signal can be specified as edge sensitive or
level sensitive. When the Internal mode is selected, only the level sensitive mode can be
set, so the peripheral block acts in on/off way.

• Click the “Level” radiobutton if you want to toggle the peripheral according to the level of the
signal.

• Click the “Edge” radiobutton if you want to toggle the peripheral on the rising edges of the
signal (when only External mode is selected).

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-33

PWM-Timer 1 & 2 sheets
The configuration sheets for the PWM-Timer 1 and 2 are the same as the PWM-Timer 0 one.
Because these PWM-Timers cannot be driven from the external pins, all the sections re-
lated to the configuration of the external functions are disabled. The disabled sections are:

• Clock Source

• Start Signal

• Reset Signal

The other section works normally as described previously for the PWM-Timer 0.

A/D Converter sheet
To configure the A/D Converter you have to specify the following characteristics:

• The conversion mode

• The channel conversion sequence

• The channel or the sequence of the channels to be converted.

In the “Conversion” section click:

• “Single” radiobutton if you want to perform a single conversion cycle

• “Continuous” radiobutton if you want the peripheral to work continuously until it is stopped.

Note: When “Single” mode is selected, after the conversion, you must start again the pe-
ripheral, with the peripheral block, if you want another conversion cycle.

In the “Channel” section click:

• “Single” radiobutton if you want the conversion of the channel specified in the “Channel to be
converted” section.

• “Sequence” radiobutton if you want the conversion of the channels sequence from the first
one up to the one specified in the “Last Channel to be converted” section.

The last section is called in two ways, according with the previous settings:

• “Channel to be converted” if the “Single” radiobutton has been selected in the “Channel”
section.

• “Last Channel to be converted” if the “Sequence” radiobutton has been selected in the
“Channel” section.

In both cases, you have to select the channel number from the drop-down list-box avail-
able in this section.

Note: The contents of the channels numbers list depends on the pin configured as analog
input: some A/D configuration are not allowed if the pins have not been configured correctly.
If no pin has been configured as analog input, the entire sheet is disabled.

FUZZYSTUDIO™ 4.1

A-34

Fig.A.14- A/D Converter sheet

SCI Sheet

To configure the Serial Communication Interface you have to specify the following charac-
teristics:

• Communication speed expressed in baud rate

• Data frame format

• Interrupt sources

Baud Rate section

Determines the communication protocol speed. The followings are the acceptable values:
600,1200, 2400, 4800, 9600, 38400 baud. Select the desired speed from the drop-down list.

Data Bits section

Determines the data bit length. The possible choices are 8 and 9 bits. It is not possible to
choose 9 bits when choosing to use the parity check or 2 stop bits.

Parity section

Allows to configure the peripheral with or without the parity check. It is possible to choose
also the parity type you want to obtain that is to say odd or even. It is not possible to use at
the same time the parity check with a number of Data bits equal to 9 bits or 2 stop bits.

Stop Bits section

Determines the number of stop bits of the frame: 1 or 2 bits. This last option can be selected
only in case the parity check is not used or in case of 8 Data bits.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-35

Interrupt Source section

Determines the events generating an interrupt:

Tx register Empty:

The transmission buffer has been read by the shift register for the transmission.

Tx Completed:

Data transmission is complete.

Rx Register Full:

The data reception has been completed and the reception buffer is full.

Overrun Error:

An overrun error occurred. A new data item has been received before reading the one re-
ceived previously.

Line Break:

The communication break code (10 bits at low level) has been recognized.

Note: More than an event can be chosen to generate an interrupt signal. However, this last
is unique and to discriminate the event that has generated the interrupt it is possible to use
the instruction DeviceStatus with an arithmetic block (see relative paragraph). Besides es-
tablishing if a specific event has generated the interrupt, allows to manage (in polling) other
events that do not generate the interrupt: the “Frame Error”, “Noise Error” and the 9th bit
data contents if the peripheral has been set appropriately. For further details refer to the
“DeviceStatus() function parameters” paragraph in Appendix A.
Warning: the SCI peripheral works properly only when the Chip Clock frequency is
set to 5, 10 or 20 MHz. If another frequency has been specified, the SCI configuration
sheet is disabled and the peripheral cannot be used.

Fig.A.15 - Serial Communication Interface sheet

FUZZYSTUDIO™ 4.1

A-36

Peripherals Setting Blocks

The Peripherals Setting Blocks for ST52x430Kx set the following peripherals:

• A/D Converter

• Watchdog

• PWM-Timer 0

• PWM-Timer 1

• PWM-Timer 2

• SCI

In the following you can find the description of each block.

A/D Converter setting block
The A/D setting block is the most complex, because it allows to change run-time the
whole configuration of the peripheral. The sections that you can find in the dialog-box al-
lows to perform the following actions:

• Start or Stop the peripheral

• Set or Reset the peripheral

• Change the conversion mode

• Change the channel conversion sequence

• Choose the channel or the sequence of the channels to be converted

• Change the A/D working frequency

To Start/Stop the peripheral, click the corresponding radiobutton at the top of the dialog
box.

If you intend to change run-time the A/D converter configuration, uncheck the “Use De-
fault Configuration” check-box and follow the instructions described below:

In the “Conversion” section click:

• “Single” radiobutton if you want to perform a single conversion cycle

• “Continuous” radiobutton if you want the peripheral to work continuously until it is stopped.

Note: When “Single” mode is selected, after the conversion, you must start again the pe-
ripheral, with the peripheral block, if you want another conversion cycle.

In the “Channel” section click:

• “Single” radiobutton if you want the conversion of the channel specified in the “Channel to be
converted” section.

• “Sequence” radiobutton if you want the conversion of the channels sequence from the first
one up to the one specified in the “Last Channel to be converted” section.

The next section is called in two ways, according with the previous settings:

• “Channel to be converted” if the “Single” radiobutton has been selected in the “Channel”
section.

• “Last Channel to be converted” if the “Sequence” radiobutton has been selected in the
“Channel” section.

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-37

In both cases, you have to select the channel number from the drop-down list-box avail-
able in this section.

Note: The contents of the channels’ numbers list depends on the pin configured as analog
input: some A/D configurations are not allowed if the pins have not been configured cor-
rectly. If no pin has been configured as analog input, the entire sheet is disabled.

The A/D Converter can work both with the chip clock frequency or with half of this frequency.
Check the apposite check-box if you want to slower to the half the A/D frequency and con-
version time.

Fig. A.16 - A/D Converter Setting Block

FUZZYSTUDIO™ 4.1

A-38

Watchdog Setting block
The Watchdog setting block is used to Start/Refresh the Watchdog counter or to disable the
peripheral.

• Click the “Start/Refresh” radiobutton if you want to start the peripheral of refresh the counter
to avoid the device reset.

• Click the “Disable” radiobutton to disable the peripheral.

Fig. A.17 - Watchdog Setting block

PWM-Timer 0, 1 & 2 setting blocks
All the PWM-Timer setting blocks are the same; each of them is used to Start/Stop or
Set/Reset the corresponding peripheral.

• To Start/Stop or Reset the peripheral, click the corresponding radiobutton.

Note: The available radiobuttons are the only allowed to the peripheral settings. For in-
stance, if the Set/Reset and Start/Stop signal of the PWM/Timer0 are set bothe as external,
none of the radiobuttons are made available. Moreover, when the PWM mode is set for the
peripheral, the only available radiobuttons are the Start and Reset radiobuttons.

Fig. A.18 - PWM-Timer Settign Block

A - FEATURES DEPENDENT ON THE TARGET DEVICE

A-39

In addition, with the PWM-Timers setting block you can start two or all the PWM-Timers at
the same time by checking the corresponding check-box.
Note: If the PWM/Timer0 is set with the Start/Stop or Set/reset signals configured as exter-
nal, the corresponding check-box is disabled.

Fig. A.19 - PWM-Timers Setting Block

SCI Setting Block

The SCI setting block is used to Start/Stop both the serial trasmission (Tx) and/or reception
(Rx).

To Start or Stop the serial trasmission click the corresponding radiobutton in the Tx section.

To Start or Stop the serial reception click the corresponding radiobutton in the Rx section.

Note: the radiobuttons are disabled if the corresponding pins Rx and Tx are not configured
in these Alternate Functions

Moreover, if the data frame has been configured as 9 bit data, you can us this setting block to
specify the value of the 9th bit (0 or 1). Check the corresponding radiobutton in the Tx sec-
tion. The radiobuttons are disabled if the peripheral has not been configured with 9 bit data.

Fig. A.20 - SCI Setting Block

B -1

B - PROGRAMMER BOARD

• Programs EPROM and OTP versions

• PC driven

• Fast parallel code transfer

• Read/write capability

• Memory blank-check

• Piracy chip protection

General Description

The Programmer board is designed to allow a fast programming of EPROM and OTP ver-
sion of the DualLogic ™ microcontroller.

The Programmer board is managed by means of a dedicated printer driver under control of
FUZZYSTUDIOTM4 software.

The Programmer Kit is composed by:

• 1 Programming Board

• 1 Communication 25 wire Flat Cable

• FUZZYSTUDIOTM4 User Manual

• 3 Floppy disks

Fig. 1 - ST52x420 Programmer Board

FUZZYSTUDIO™ 4.1

B -2

Software Installation

The Programmer board is directly managed by FUZZYSTUDIOTM4 software then no spe-
cific driver installation is required. Refer to FUZZYSTUDIOTM4 installation software note to
install the whole environment.

Hardware Installation

Because of the Read/Write programmer capabilities, your PC must be equipped with a
bi-directional parallel port. If your PC-motherboard is an old version, check if this port con-
figuration is available in the BIOS setup.

To install the Programmer board, follow these steps:

1. Power off PC

2. Connect the 25 wires cable connector to the LPT1 parallel port

3. Power on PC

4. Run the BIOS setup and check parallel port configuration (port address and direction
mode). Standard configuration should be: port address=378Hex or 278Hex and
bi-directional mode or ECP/EPP mode.

If a different direction configuration is enabled, please change in BI-DIRECTIONAL
mode.

Programming Phase

After the project editing and compilation phase, FUZZYSTUDIOTM4 will generate a binary
file with the same name of fuzzy project in the current working directory.

This binary code, contained in the “filename.bin” file, is written into the device memory in the
downloading phase.

Before writing the binary code in the device, it is suggested to open the option in the “down-
load option” dialog box.

Fig. B. 2 - Programming Options dialog box

B - PROGRAMMER BOARD

B -3

Device Programming
After opening the download options, insert the device on the apposite socket, turn the pro-
grammer board on and choose the PROGRAMMER > RUN command from the TOOLS
menu.

Note: Take care during the insertion of the device. Insert the device with pin 1 aligned to
the printed “1” in the board then turn the Programmer Board on (15Vdc to 18Vdc).

Hardware Description

The Programmer board is a simple interface between PC and the device. A software driver
allows a direct control of board signals as a particular printer.

The board is designed to work with a wide range of power suppliers (15Vdc to 30Vdc
unstabilized) and to work with a low cost 25 wires flat cable (unshielded cable).

Note: A red LED is used to monitor the power and the short circuits during a possible wrong
insertion of device.
Note: Although a logic buffer is used to isolate PC signals, it is suggested to turn off the
board or disconnect the cable when not used. Other user programs could use the PC paral-
lel port without warnings.

Fig. 3 - ST52x420 Schematics

FUZZYSTUDIO™ 4.1

B -4

C -1

C - FSASM ASSEMBLER PROGRAMMING TOOL

Introduction

FSAsm is a powerful tool allowing to program the ST52 family products in Assembler.

FSAsm combines the features of a text editor, for the writing and editing of the assembler
program, with an easy-to-use machine code generation. The Assembler program can be
tested by using the Debugger tool that supplies a graphical environment to insert the result
of the chip’s simulation. Then, the devices can be quickly programmed by means of an ap-
posite programming board connected to the PC.

Moreover, it is possible to generate the Assembler listing by creating a new program or by
loading a file with the extension .ASM previously generated with FUZZYSTUDIO™4.1 and
then modify it with FSAsm.

System Requirements

Before you install FSAsm, make sure you have all the hardware and software you need to
run the program:

• Intel type 80386 processor or higher.

• 8 Mb RAM memory.

• Hard Disk with at least 3 Mbytes of free space.

• VGA or higher graphics card.

• Mouse.

• Windows 95/ 98/ NT operating systems.

Fig. C.1 - FSAsm Main Window

FUZZYSTUDIO™ 4.1

C -2

Installing FSAsm

The FSAsm Program is installed during the FUZZYSTUDIOTM4 installation. Please refer to
the FUZZYSTUDIOTM4 installation in chapter 1.

FSAsm Main Window

This section provides an overview of the major elements of the FSAsm Main Window that
you see at a first glance when you start a new project or open an existing one.

FSAsm menus
FSAsm commands are grouped in menus. Some commands carry out an action immedi-
ately; others display a dialog box so that you can select options.

File Provides standard commands for the management of files, printing and a list of
the most recently used files.

Edit Contains standard commands for the editing of the program.

View Provides commands to show/hide the toolbar and status bar, font and tab set-
tings commands.

Tools Provides commands for the machine code generation debugging and the de-
vice programming by means of the programming board.

Windows Contains commands related to windows management.

Help Contains help commands.

Note: When the FSAsm Debugger is active and in foreground the menu item DEBUGGER is
added containing the related commands.

FSAsm toolbar
The FSASM toolbar allows to perform the most frequently used commands quickly. To exe-
cute a task by means of a button, just click the related button on the toolbar.

New, Open,
Save and Print

Cut, Copy,
Paste

Options,
Download,Assembly,

Target Device,
Debugger

About, Help on Line

FSAsm status bar
The status bar contains information about the current selected target chip, the selected fre-
quency, the current line number and the position of the cursor.

It is possible to display/hide the status bar by using the apposite command from the View
menu.

Fig. C.2 - FSAsm status bar

C - FSASM ASSEMBLER PROGRAMMING TOOL

C -3

Managing and Printing Files

A new editing page, and then a new program, can be started with the command New
(CTRL+N) from the File menu or clicking the apposite toolbar button. By default, the file
name is Untitledx where x is a progressive number according to the already open files “Un-
titled”.

• The file can be saved by means of the command SAVE (CTRL + S) or, with the possibility to
modify its name and directory, with the command SAVE AS …

• The file can be closed with the CLOSE command.

• To open an already existing file use the command OPEN (CTRL + O) or the apposite toolbar
button. This command allows to open the dialog box for the selection of the file to open.

To print the file the following commands are available:

• The PRINT… command (CTRL + P) allows you to print the current file.

• The command PRINT SETUP… allows to open a dialog box for the printer setup.

• PRINT PREVIEW allows you to display a program before printing it.

• The command EXIT allows you to exit from FSAsm tool (ALT + F4).

Editing Commands

FSAsm provides standard editing commands:

Command Description
CUT (CTRL + X) Removes the currently selected text and places it on the clipboard.

COPY (CTRL + C)
Makes a copy of the currently selected text and places the copy on
the clipboard.

PASTE (CTRL + V)
Places a copy of the text currently on the clipboard at the currently se-
lected location. The text remains on the clipboard.

DELETE (DEL) Removes the current selected text.
UNDO (CTRL + Z) Choose Undo from the Edit menu to undo the previous editing action.
FIND…(CTRL + F) Searches a selected text.
REPLACE…(CTRL + H) Allows to search for and replace text items.

The described commands can be accessed from Edit menu or from the pop-up menu that
opens by clicking the right mouse button on the document.

It is also possible to set fonts and tabs by selecting the following commands on the View
menu:

• TAB … allows to specify the number of blank characters which form a single tab stop.

• FONT… allows you to set the fonts.

FUZZYSTUDIO™ 4.1

C -4

Target Device Selection

To generate the current project’s machine code, it is necessary to specify the target device
to which the code refers to, if not already specified during previous working sessions.

To specify the target device do the following:

1. Select the command DEVICE from the menu TOOLS or click from the toolbar).

2. In the Target Device dialog box select the device from the scroll-down list.

3. Click OK.

In addition, the text-box to specify the working frequency is supplied. This data item is used
only by the Debugger tool to simulate with the correct timing the chip’s elaboration. The cho-
sen device is indicated in the status bar; if no device has been selected yet, only the word
“Device” will appear.

Fig. C.3 - Target Device dialog box

Note:The Target Device dialog box automatically appears anytime you choose a command
that requires to know the target device, if not yet previously specified .

C - FSASM ASSEMBLER PROGRAMMING TOOL

C -5

Machine Code Generation

Once the target device has been selected, it is possible to generate the machine code rela-
tive to the current program, e.g. the one appearing in the active window if more than one pro-
ject is open.

To generate the machine code select the ASSEMBLY command from TOOLS menu or click
on the apposite toolbar button.

This Assembly command determines the opening of the Output Window :in case of unsuc-
cessful compilation, the list of errors is displayed. Refer to the complete list of errors during
the generation of the machine code.

In the Assembly results window, double-clicking on the error message the source code win-
dow pops up showing the line where the error occurred.

Fig.C.4 - Assembly Results are shown in the output window

Debugger

FSAsm supplies the Debugger tool that allows to test the developed program by means of
the chip’s simulation. The Debugger graphical environment allows to choose and visualize
the signals to be observed in their time evolution. Then, you can test your program before
implementing the application.
The FSAsm Debugger is the same environment of the FS4 Debugger with the same
functionalities with the exclusion of the tools and functionalities related to the high-level pro-
gram definition. In particular the following parts have been excluded:

• FSCode Window

• Block Trace

• Variables Dump

The only high-level feature supplied is the use of the Predefined Variables to address In-
put and Output Registers. Anyway the Predefined Variables cannot be used in the As-
sembler program definition.

For all the details on using the Debugger refer to the Chapter 14 in the FUZZYSTUDIO™ 4
User Manual.

FUZZYSTUDIO™ 4.1

C -6

Device Programming

After the machine code has been successfully completed, it is possible to program the tar-
get device inserted in the apposite board.

Make sure the device has been inserted in the correct way, that the board is turned on and
check if it is connected to the computer’s parallel port. Moreover, make sure the program
has been compiled for the correct device and that the programming board is the suitable
one for that device.

It is possible to choose and customize the operations to carry out during the downloading
phase, specifying the options using the tab-sheet accessible by means of the Download
Options command. Refer to next paragraph for a detailed description of the available op-
tions.

To start the programming of the device inserted in the socket select the command DOWN-
LOAD from the TOOLS menu or click on the apposite toolbar button. The output window
opens displaying the evolution of the downloading phases and the eventual error mes-
sages.

C - FSASM ASSEMBLER PROGRAMMING TOOL

C - 7

Device programming status messages
The list of possible messages displayed in the output window is the following one:

Blank Check
The protocol has started to verify the device is not programmed.

Blank Checking Device
The device is being verified that it is not programmed.

Device Lock
The protocol has started the lock of the device memory.

Done
The download has been successfully completed.

Done with Errors
The download has not been successfully completed because an error occurred.

ID Code Read
The protocol has started to read the ID Code.

ID Code Write
The protocol has started to write the ID Code file into the device memory.

Locking Device
The device memory is being locked .

Memory Read
The protocol has started the dumping phase of the device memory.

Memory Write
The protocol has started the writing phase into the device memory.

Reading ID Code
The ID Code is being read in the device memory.

Reading File
The binary file, containing the program to be written into the device memory, is being read.

Reading Memory
The device memory to generate the dump file is being read.

Testing Lock Bit
The device is being verified that it is not locked.

Writing File
The dump file of the device memory is being generated.

Writing ID Code
The ID Code is being written in the memory device.

Writing Memory
The device memory is being programmed.

FUZZYSTUDIO™ 4.1

C -8

Device programming error messages

Device is Locked
It has been attempted an operation in a locked device. The only operation allowed on a
locked device is the reading of the ID Code.

Device not Blank
The inserted device has not been canceled properly or it is badly placed in the socket.

Error Reading File filename
An error has occurred during the reading of the file containing the binary code to be loaded
into the device memory or during the reading of the ID Code. Check if the file exists or if it is
corrupted; in the case of the ID Code, check if the name and the path have been specified
correctly.

Error Writing File filename
An error has occurred during the reading of the dump file or during the generation of the ID
Code. Check if there is enough space on the disk or if the file name has been correctly speci-
fied.

Out of Memory
A memory error has occurred. Try closing some open programs.

Unable to Lock Device
The device locking has not been successfully completed. The device could be either al-
ready protected or damaged.

Unable to use I/O Ports
You are trying to use the Programmer under Windows NT Operating System or a wrong par-
allel port address has been specified or the port is out of order.

Write Memory Error
An error has occurred during the programming of the memory device. Check if the device
has been correctly inserted or if it is already programmed enabling the Black Check control.
Or the device could be damaged.

Wrong Binary File
The binary code file to be loaded into the device memory is corrupted or the file format is not
correct. Try to generate again the binary code file.

C - FSASM ASSEMBLER PROGRAMMING TOOL

C -9

Programming Options

Before starting the downloading phase of the device, it is possible to specify the operations
to carry out during this phase.

To open the Download Code Options Tab-sheet select the item DOWNLOAD OPTIONS
from TOOLS menu or click the apposite toolbar button. Choose the “Download Options”
sheet to set the most common actions to be performed during the downloading phase; se-
lect the sheet “Advanced” to perform more advanced settings.

Download Options Settings
In this tab it is possible to enable/disable the following actions:

Download Binary File
Memory device programming.

Blank Check
Verify if the device has been erased.

Fig. C.5 - Download Options

Lock Device
Device read protection

Note : The device reading protection prevents the reading of the Memory Program content.
A device protected in reading can be unprotected only erasing the EPROM memory by ex-
posure to the UV rays . The on ly opera t i on tha t i s poss ib le to ca r ry ou t on a
reading-protected device is the reading of the ID code.

FUZZYSTUDIO™ 4.1

C -10

Advanced Settings
In this sheet it is possible to specify the advanced options related to the actions started dur-
ing the programming phase. It is suggested to maintain unchanged the default parameters
in case you are not sure about the changes to carry out.

Memory Dump File
In this edit-box specify the file name including the file path in which the data read from the
program memory during the downloading phase are to be found. The default name is down-
load.log; if no name is specified the dump file is not created. The data are shown in hexa-
decimal format.

Protocol Delay
This parameter (suitable values are between the range 80� 400) indicates the speed of data
transmission through the parallel port. The default value is 100; specify a greater value if
you want to speed up the transmission. The maximum speed you can specify depends from
the computer’s speed. In case of too high speed the downloading could fail. If you prefer it, it
is possible to calibrate automatically the speed factor by checking the Automatic
check-box.

Source ID Code File
In this edit-box you can specify the file name including the path containing the ID Code, in
text format, to write in the apposite memory space of the device. The data are written during
the programming phase of the device but can be written in an already programmed device if
that area has not already been programmed. If you do not want to write the memory contain-
ing the ID Code do not specify any source file. The total space available is 64 bytes; the file
must be formed by 64 characters: further characters will be ignored.

Destination ID Code File:
In this edit-box you can specify the file name including the path containing the ID Code, read
from the apposite memory space of the device. In order not to carry out the reading of the ID
Code file, do not specify any destination file. The file format is textual and is shown both in
numeric and ASCII format.

I/O Port
This edit-box is used to specify the address of the parallel port connected to the board. The
default address is 0X378 (LPT1).

Fig.C.6 - Advanced Settings

C - FSASM ASSEMBLER PROGRAMMING TOOL

C -11

Assembler Error List

argument “xxx” is not integer
The specified argument “xxx” is not an integer value. Only integer values can be used in As-
sembler commands.

argument “xxx” out of range
The argument “xxx” is out of the allowed range.

bad label string “name”
The label “name” is not a valid label. It may contain not allowed characters.

bad option “xxx” in command line !
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

badly placed or missing “(”
The left parenthesis has been found in a misplaced point or the right parenthesis number is
greater than the left one.

badly placed or missing “)”
The right parenthesis has been found in a misplaced point or the left parenthesis number is
greater than the right one.

badly placed or missing parenthesis
A parenthesis has been found in a misplaced point or it is missing where necessary.

call to wrong output function
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

cannot access an output file
The code file cannot be accessed. Check the right of the destination directory or if the disk is
full.

cannot access input file
The Assembler input file is corrupted or has been deleted or an Internal Error occurred.

cannot access temporary file
The temporary file used during code generation cannot be accessed: the disk may be full or
the file is read-only or an Internal error occurred.

cannot close output file
A file generated during the code generation is corrupted or the disk space is full.

cannot open input file “name”
The Assembler input file “name” is corrupted or has been deleted or an Internal Error oc-
curred.

cannot open output file “name”
The code file “name” cannot be opened. Check the right of the destination directory or if the
disk is full.

FUZZYSTUDIO™ 4.1

C -12

cannot open temporary output file
The temporary file used during code generation cannot be opened: the disk may be full or
the file is read only or an Internal error occurred.

cannot write on binary file
The binary code file is corrupted or the disk space is full.

code will overwrite user data
User data have been placed in memory locations where the program code should be allo-
cated. Change the allocation of the data or check the placement of SETMEM instructions.

data will overwrite previous data
User data have been placed in memory locations where other user data have already been
allocated.

error using input file
An error occurred reading Assembler source file: it may be corrupted or has been deleted or
an Internal Error occurred.

error using output file
An error occurred writing the code file: the disk may be full or the file is read only or an Inter-
nal error occurred.

function “name” returned value “value”
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

fuzzy output not computed
The fuzzy instruction OUT is missing for the computation of the output fuzzy variable.

illegal label “lab_name” before command “com_name”
The label “lab_name” has been specified before IRQ or DATA commands or before a Fuzzy
Instruction. Delete the label.

insufficient arguments in command line !
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

interrupt number “value” out of range
The specified interrupt number is not allowed. Specify a value between 0 and 3.

interrupt redefined for signal “number’
The interrupt “number” vector has been already defined. Check the interrupt vectors in-
dexes in IRQ commands.

left vertex distance “number” out of range
The specified number is not in the range [0 , 255].

line “number” is too long
The line number “number” is more than 256 character

misplaced command “name” for ADM block
The command “name” not belonging to the allowed set for Antecedent Data Setting has
been found. Check for syntax errors.

C - FSASM ASSEMBLER PROGRAMMING TOOL

C -13

misplaced command “name” for ALU block
The command “name” not belonging to the allowed set for ALU operations has been found.
Check for syntax errors.

misplaced command “name” for FUZZY block
The command “name” not belonging to the allowed set for Fuzzy computation has been
found. Check for syntax errors.

misplaced command “name” for IRQ block
The command “name” not belonging to the allowed set for Interrupt management has been
found. Check for syntax errors.

missing ADM definition. Bad Fuzzy block
Fuzzy commands have specified without the definition of Antecedent Memory data.

missing one or more file names !
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

missing operand(s) for command “name”
One or more operands expected for the command “name” were not found. Complete the in-
struction with all the correct operands.

missing reference for label “name”
The label “name” has been used but not referenced inside the program. Check for syntax er-
rors.

new address “address” < current “address”
The address specified with the SETMEM instruction refers to a location before to the current
one and causes program code overwriting.

no more memory available
There is not enough memory to run Assembler. Try closing some open programs.

no output format specified !
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

not enough fuzzy operands
AND/OR operator have been used loading only one value in the stack.

out of chip code space
The generated program is longer than the available chip memory space. Try optimizing the
program.

pending operands into fuzzy core
A value, previously loaded in the buffer with SKM instruction, has been left without using it.

redefinition for label “name”
The label “name” has been previously defined in the program.

right vertex distance “number” out of range
The specified number is not in the range [0 , 255]

FUZZYSTUDIO™ 4.1

C -14

temporary fuzzy core buffer is empty
A LDM instruction has been specified without using SKM instruction before.

temporary fuzzy core buffer is not empty
A SKM instruction has been specified twice without using a LDM instruction between for us-
ing the previously loaded value.

temporary fuzzy core stack is empty
CON or LDK or SKM instruction has been specified with the stack empty.

too many arguments on command line !
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

too many fuzzy antecedents
Too many antecedents term (more than 8) have been included in rule processing.

too many fuzzy operands
Too many operands have been specified in instructions for rule processing.

too many operands for command “name”
More than the expected operands were found with command “name”. Check the correct-
ness of the instruction deleting unnecessary operands.

vertex “number” out of range
The specified number is not in the range [0 , 255]

undefined label “name”
The label “name” is used but not defined. Check for syntax errors.

undefined membership “value”
The specified membership function in fuzzy instruction has not been previously defined.

undefined starting jump to executable code
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

unexpected end of source
The source code ended in a not correct way. Check if the source file is corrupted or for syn-
tax errors.

unrecognized command “name”
The specified command “name” is not a valid command. Check for syntax errors.

unsupported function “name” for command “command”
Internal error: contact STMicroelectronics - Fuzzy Logic B.U.

wrong membership number “value” (should be “value”)
The value specified as first argument in the MBF instruction is not valid.

C -15

ST52X4XX CORE

PROGRAM MEMORY

RAM

CONTROL UNIT

DPU

ALU

ON CHIP PERIPHERALS

PERIPHERAL REGISTERS

CONFIGURATION

REGISTERS

INPUT REGISTERS

LDRI

LDCR

LDPR

LDRC

LDCE

PERIPHERAL

BLOCK

Fig. C.7 - Address spaces

ASSEMBLER LANGUAGE

Program Memory and Registers’ Architecture

To program in Assembler, it is important to consider the architecture of the processor and in
particular the address spaces: Program Memory, RAM and registers.

Program Memory
The Program Memory is the EPROM memory where the program is stored. This is made up
by three main sections:

• Interrupt Vectors

• Membership Functions (MF) Data Memory

• Program/Data Space

The first three memory locations should contain the jump instruction to the first program
instruction address. The Assembler automatically inserts this jump instruction during
the code generation.

The memory locations about the Interrupt Vectors are organized in blocks of three bytes
where the Interrupt Service routines addresses are contained(the first byte is the jump
instruction op code).

After this section, both data type (MF or program data) and program instruction can be
inserted. To avoid undesired overlap between data and instructions, it is recommended
to write the first program instruction after the data section. The MF data must precede
the Program data and/or instructions.

The MF Data describe the Membership Functions in a codified form: 3 bytes per MF that
represent respectively the left semi-base, the vertex position in the Universe of Dis-
course and the right semi-base. MF data are stored in the Program Memory by using the
instruction MBF. They can be stored up to the address 1023.

FUZZYSTUDIO™ 4.1

C -16

Vector n

Vector …

Vector 2

Vector 1

Fig. C.8 - Program Memory map

Instruction Description
LDCE Configuration register loading from Program Memory location.
LDPE Output Register loading from Program Memory location indirect,
LDRE RAM location loading from Program Memory location.
LDRE RAM location indirect loading from Program Memory indirect.

The Program Memory contains all the boolean, arithmetics and fuzzy instructions. The tra-
ditional boolean or arithmetic instructions and the ones for the flow control of the program
(jump instructions) are separated from the fuzzy instructions by the FUZZY instruction.

WARNING: The fuzzy computation can be interrupted at the end of the computation of
a single rule. Be careful when using fuzzy computation in interrupt service routine
because it may corrupt an interrupted fuzzy computation section in the main pro-
gram.
The Program Memory can also contain program data stored with the instruction DATA.
These locations can be addressed by the use of the following Assembler instructions:

These instruction can address Program Memory location by pages because they can ad-
dress only 256 location. The current Memory page can be set by the PGSET instruction.

C - ASSEMBLER LANGUAGE

C -17

Instruction Description
ADD Addition
ADDO Addition with offset
AND Logic AND
ASL Shift left
ASR Shift right
DEC Decrement
DIV Division
INC Increment
LDCR Configuration register loading with location contents
LDFR Fuzzy input register loading with location contents
LDPR Output Register loading with location contents
LDRC Location loading with a constant
LDRE Location loading from Program Memory location
LDRE Location indirect loading from Program Memory location indirect
LDRI Location loading with the input register contents
LDRR Location loading with another location contents
MIRROR Mirroring of location contents
MULT Multiplication
NOT Logic NOT
OR Logic OR
SUB Subtraction
SUBO Subtraction with Offset

RAM Memory
The RAM Memory is composed by locations that can be used either as read and write.
These memory locations contain the data which you can perform arithmetic and boolean op-
erations. In addition, starting from the bottom, the RAM space is used as system stack to
store the program counter after a CALL instruction or after an interrupt acknowledgment.
For this reason, care should be taken using high address location to avoid overlapping with
the stack.

Several assembler instructions can address these locations:

FUZZYSTUDIO™ 4.1

C - 18

Configuration Registers

The Configuration Registers file consists of write-only registers. These registers have the
task to contain the internal peripherals’ configuration of the processor.

It is possible to load these registers through the following instructions:

Constant values should be loaded before in Program Memory or Ram Memory location and
then loaded in Configuration register with the above mentioned instructions.

For a detailed description of the Configuration Registers, refer to the device data-sheet.

Input Registers

The Input Registers file consists of read-only registers. These registers allow to read the pe-
ripherals’ values and to check their status. They can be addressable only by means of the in-
struction LDRI that reads the value from the input register specified and loads it on the
specified location of the RAM Memory.

Output Registers

The Output Registers File consists of write-only registers. Their function is to write particu-
lar data to be used by some of the peripherals. They can be addressed only with the follow-
ing instructions:

Instruction Description
LDCE Configuration register loading from Program Memory location.
LDCR Configuration register loading with a RAM location contents.

Instruction Description
LDPE Output Register loading from Program Memory location indirect.
LDPR Output Register loading with RAM location contents.

C - ASSEMBLER LANGUAGE

C - 19

Flags

The ST52 family core owns three flag bits with stack levels for the interrupts. This means
that both the main program and all the interrupt routines have their own flags. A Return from
Interrupt restores the flags status at the moment of the interrupt request.

The flag bits are the following:

See the Assembler Instructions description to know what are the instructions that affects
the flag and how they do it.

The flags are taken into consideration by the conditional jump instructions that are the
following:

Flag Description
S Sign flag: it is set in case of underflow.
C Carry flag: it is set in case of overflow
Z Zero flag: it is set when the result of an operation is zero.

Instruction Description
JPC Jumps if carry flag is set.
JPNC Jumps if carry flag is not set.
JPNS Jumps if sign flag is not set.
JPNZ Jumps if zero flag is not set.
JPS Jumps if sign flag is set.
JPZ Jumps if zero flag is set.

FUZZYSTUDIO™ 4.1

C - 20

Fuzzy Programming in Assembler

The programming of the fuzzy functionalities in Assembler is a complex task. For this rea-
son it is more convenient to perform the programming by using the graphic tools provided by
FUZZYSTUDIO™.

The fuzzy programming in Assembler is divided into two phases: the first to define the Mbfs
and the second to define the rules.

Membership Functions definition
The assembler instruction to define the Membership Functions is MBF. It indicates to the
Compiler which data have to be loaded according to the programmer’s specifications.

The MBF instruction syntax is the following one:

MBF mbf_num lvd vtx rvd

where:

mbf_num the order number of the mbf that you are defining.

lvd distance of the left vertex Mbf from the central vertex.

vtx position of the central vertex in the Universe of Discourse.

rvd distance of the right vertex Mbf from the central vertex.

Fig. C. 9 - Triangular Mbf Fig. C. 10 - Trapezoidal Mbf

Note: In case you want to store trapezoidal Mbfs to the extremes of the Universe of Dis-
course, the value of lvd (if the horizontal side is the left one) or the value of rvd (if the
Horizontal side is the right one), is 0. The Membership Function showed in the figure on the
left is stored as third Membership Function with the instruction: MBF 2 0 120 80 .

The Membership Functions data should be inserted to the lower addresses of the Program
Memory, before program instructions, starting from address 18 and up to the address 1023.
MBF data placed over this address cannot be processed. Each MBF instruction stores
three bytes of data: so up to 335 Membership Functions can be stored. The Membership
Functions are identified with the progressive number mbf_num specified in the instruction
MBF that is not related to any input variable. So the same Membership Function can be
shared by many fuzzy input variable.

C - ASSEMBLER LANGUAGE

C - 21

Rule Inference

The fuzzy computation unit is made up by:

• Multiplier block for the � calculation and for the consequent inference.

• A two-level stack to contain the two operands of a fuzzy operation.

• Temporary Buffer to store partial results.

• Computational block for AND (min) and OR (max) operations.

• Adder to obtain the partial results of the defuzzyfication.

• Two registers to hold the partial results of the defuzzyfication.

• Divider for the defuzzyfication and the calculation of the output.

The fuzzy instructions affect these block in the following way:

In the ST52 family, each fuzzy rule is consists of up to 8 antecedents and up to as many con-
sequent as the RAM memory locations. Each antecedent term is the result of the
fuzzyfication of the value of one fuzzy variable according to its particular membership, while
the consequent is a constant value.

Fuzzy Variables are initialized, with the crisp values contained in the RAM locations, by
means of the LDFR instruction. The arguments of this instruction are the fuzzy destination
variable address (0 to 7) and the source RAM location.

The combination of the antecedents, eventually negated, through fuzzy AND/OR opera-
tions generates a weight to evaluate the consequent. The two available operations, FZAND
and FZOR, work on a stack with two positions that must be previously loaded by the user
through the LDN and LDP instructions. Being these commutative operations, the loading or-
der of the values on the stack is not relevant. The stack is automatically emptied after the
performing of each fuzzy operation.

The instructions LDN and LDP provide the loading of the stack with the result of the
fuzzyfication of the current value of a fuzzy variable according to a given membership (refer
to Instruction Set list for the difference of the two instructions). In particular, the first argu-
ment of these instructions indicates the fuzzy variable in question and the second the Mem-
bership Function number.

After the performing of a fuzzy operation, the programmer has to manage the result by
means of one of the instructions LDK, SKM, CON. In particular, the instruction LDK allows to
load again the result of a fuzzy operation in the stack, to use it in the following operation,

Instruction Description
CON activates the multiplier to execute consequent inference
FZAND executes the AND (minimum) fuzzy operation
FZOR executes the OR (maximum) fuzzy operation
LDK loads stack with the result of the last fuzzy operation
LDM loads stack with the temporary buffer contents.
LDN executes the fuzzyfication of an input and loads the stack
LDP executes the fuzzyfication of an input and loads the stack
OUT activates divider to compute the fuzzy output
SKM stores last fuzzy operation result on the temporary buffer
LDP executes the fuzzyfication of an input and loads the stack.

FUZZYSTUDIO™ 4.1

C - 22

while the instruction SKM stores that result in a temporary buffer, from which it could be
loaded in the stack by means of the instruction LDM. The instructions SKM and LDM imple-
ment the equivalent of a couple of brackets.

The instruction CON multiplies the result of the last fuzzy instruction to a constant value, us-
ing it as a weight to evaluate such value.

The instruction OUT performs the defuzzyfication of a fuzzy output using the results of all
the previous CON instructions.

The Assembler instructions operate as in the following example: let us suppose you have
previously defined the Mbf with MBF instructions, then the rule:

IF Inp0 is NOT MF01 AND Inp2 is MF21 OR Inp3 is MF33 THEN CRISP1

is therefore codified as:

LDN 0 1 Loads in the stack the NOT � value relative to the first term of the rule (suppos-
ing that mbf_num for MF01 is 1).

LDP 2 21 Loads in the stack the NOT � value relative to the second term of the rule(sup-
posing that mbf_num for MF21 is 21) .

FZAND Calculates the min between two values in the stack.

LDK Stores the result of the previous operation in the stack.

LDP 3 33 Loads in the stack the � value relative to the third term of the rule (supposing
that mbf_num for MF33 is 33).

FZOR Calculates the max between the two values in the stack.

CON 58 Performs the product between the values calculated and the value CRISP1 =
58 (consequent calculus)

Now, let us suppose you have the following rule:

IF (Inp2 is MF21 AND Inp3 is NOT MF35) OR (Inp0 is MF03 OR Inp1 is NOT

MF16) THEN CRISP2

It is codified with the following instructions:

LDP 2 21 Loads in the stack the � value relative to the first term of the rule (supposing
that mbf_num for MF21 is 21).

LDN 3 35 Loads in the stack the NOT � value relative to the second term of the rule (sup-
posing that mbf_num for MF35 is 35).

FZAND Calculates the min between the two values in the stack.

SKM Stores the calculated value on the temporary register.

LDP 0 3 Loads in the stack the � value relative to the third term of the rule (supposing
that mbf_num for MF03 is 3).

LDN 1 16 Loads in the stack the NOT � value relative to the fourth term of the rule (sup-
posing that mbf_num for MF16 is 16).

FZOR Calculates the max between the two values in the stack.

LDK Stores the result of the previous operation in the stack.

LDM Copies the content of the temporary register in the stack.

C - ASSEMBLER LANGUAGE

C - 23

FZOR Calculates the max between the two values in the stack

CON 35 Performs the product between the value calculated and the value CRISP1=35
(Consequent calculus).

After the inference of all the rules relative to an output, you can obtain the output through the
instruction:

OUT 0 To calculate the first fuzzy output.

The fuzzy computation instructions of each output always start with a FUZZY instruction so,
after the first instruction OUT, it is necessary to specify again the FUZZY instruction before
starting the instruction for the computation of the next fuzzy output.

The rules that can be inferenced in Assembler must have a max format of eight antecedent
terms and one consequent term. More complex rules can be reduced into equivalent ones
with an allowed format. As example, the rules having more than one consequent term can
be split in as many rules having the same antecedent part and one of each consequent term.

Note: All rules relative to an output have to be consecutive to calculate the output. Refer to
pseudo-instruction list and ST52 data-sheet for further detailed explanations.

FUZZYSTUDIO™ 4.1

C - 24

C - 25

THE STRUCTURE OF A PROGRAM

The ST52 programs in assembler language follows the rigid structure listed below:

• Interrupt Vector Definition

• Membership Function data

• Arithmetic Instructions and/or Program Memory data

• Fuzzy Instructions

• Arithmetic Instructions and/or Program Memory data
The program must end always with an Arithmetic Instruction sections. Couples of arithmetic
and fuzzy sections can be repeated to the user discretion. It is not mandatory to insert fuzzy
sections, it is necessary to insert at least one arithmetic instructions sections.

The easiest program for a chip of ST52 family consists of the following arithmetic instruc-
tions as shown in following:

loop: jp loop

This indicates that a program should end with a loop to another part of the program: the pro-
grammer must be sure that the last arithmetic instruction is the unconditional jump. On the
contrary, even if the assembler program is syntactically correct, the chip would continue to
execute and sequentially perform the EPROM content, with malfunctionment.

Each section is made up by an assembler code line sequence, with the eventual insertion of
blank lines. The fuzzy section for the computation of a single fuzzy output must always start
with the instruction FUZZY. If other outputs have to be computed, the instruction FUZZY
must be inserted again for each output.

Structure of a Generic Code Line

Each code line consists of a single instruction followed by the relative topics. The instruction
must not necessarily be at the beginning of the line, but it can be preceded by any number of
space character. The instruction is separated by its arguments by at least one space char-
acter. The arguments are separated among them by at least one space character and op-
tionally, by a “ , ” character. The tabs characters are considered as space characters. The
use of lower case letters for instructions is mandatory because the ST52 Assembler is case
sensitive.

Comment sequences

It is possible to insert comment sequences in the code by inserting a “ ; ” character before.
The comment sequences can be written along the whole line until its end. It is possible to in-
sert only single comment lines or add a sequence of comment at the end of the instruction.

FUZZYSTUDIO™ 4.1

C - 26

Line label

A line label is a particular character’s sequence that allows to univocally determine a code
line and then an assembler instruction. A line label must begin with an alphabetic character
and can only contain alphanumeric characters. The definition of a line label occurs only
when inserting that label at the beginning of the corresponding code line (the new label can
be preceded only by space characters) and making it follow by a “ : ” character The maxi-
mum length of a label is 32 characters. The character “ : ” does not belong to the labels: it is
used only to define a new label, to end the corresponding alphanumeric sequence. Further-
more, the character “ : ” does not carry out as separator and has to be followed by one or
more space characters.

ST52 family Assembler language allows to define line labels only within arithmetic instruc-
tions, that is only to refer to arithmetic instructions. However, it is possible to associate line
labels to blank lines containing only comment sequence, but those lines have to be followed
by at least one line containing an arithmetic instruction.

Interrupt Vectors Definition

It is a program’s section that allows to define the starting address for the interrupt service
routine that will be defined in the program. The interrupts service routines starting ad-
dresses are supplied through apposite line labels that identifies the first code line. The pro-
grammer is not obliged to define the interrupt procedures for the available signals. It is then
possible to omit even the entire interrupt vector definition section.

The directive to define the interrupt vectors is IRQ. The parameters supplied are the inter-
rupt number and the label that indicates the associated service routine starting address.
See pseudo-instruction list to further details.

Note The interrupt vectors definition sector must precede all the program instruction and
cannot be insert after any other command or Assembler directive.

Program Memory Organization

The ST52 family Program memory is organized by pages of 256 bytes. To access to data
and addresses with the Assembler instruction and directives, the user have to specify both
the page and the address inside the page.

Actually, instructions can address memory location with 8-bit, so only addresses in the
range 0-255 can be managed. The page number is progressively incremented starting from
0 for the first 256 locations up to the last available memory page.

WARNING: The currently set page number is affected and modified after a jump or
call instruction or after servicing an interrupt routine. For this reason it is strongly
recommended to insert a PGSET instruction each time data in the Program Memory
should be accessed. In addition, it is recommended to disable globally the interrupts,
with the instruction UDGI, before the PGSET instruction and enable them, with the
UEGI instruction, after completing the data access.
To set the current page address the instruction PGSET is used. The only argument of this in-
struction is an integer value representing the number of the page to be set as current.

C - THE STRUCTURE OF A PROGRAM

C - 27

Data Management

Data section or look-up table can be inserted in the EPROM memory to be used with the in-
structions that addresses the location of the Program Memory. The Assembler directive to
store data in the Program Memory is DATA. The arguments in the order are: the page, the
address inside the page (refer to ”Program Memory Organization” paragraph) and the 8-bit
data.

Data directives can be inserted everywhere in the program but after the Interrupt Vectors
section and the Membership Functions data section.

Current Program Address Management

The first program instruction is allocated automatically in the device memory after the Inter-
rupt Vectors and the Membership Functions data. The first three Program Memory location
are programmed automatically with a jump instruction to this address so, after the reset, the
Program Counter jumps directly to the first program instruction. After that, the current pro-
gram address is incremented sequentially as many byte as the current instruction length.

To modify the current memory address, in order to better allocate data and program instruc-
tions, it is available the directive SETMEM. The argument of this directive are the page and
the memory address inside the specified page (refer to the “Program Memory Organization”
paragraph).

FUZZYSTUDIO™ 4.1

C - 28

ASSEMBLER INSTRUCTION SET

FUZZYSTUDIO™ 4.1

C - 30

ASSEMBLER INSTRUCTION SET

C -31

ADD
Addition with Offset

Format : add dst, src

Operation: dst � dst + src

Description:
The content of the RAM location specified as source is added to the
content of the destination location, leaving the result in the destina-
tion.

Flags: Z sets if result is zero , cleared otherwise.
C sets if overflow, cleared otherwise.
S not affected.

Bytes 3

Cycles 17

Example If the RAM location 20 contains the value 45 and the RAM location 11
contains the value 15, then the instruction:

add 20, 11 0010000 000010100 00001011

causes the location 20 of the RAM to be loaded with the value 60.

If the location 20 contains the value 200 and the location 11 contains
the value 100, the instruction causes the location 20 to be loaded with
the value 44 (result-256) and the C flag to be set.

FUZZYSTUDIO™ 4.1

C - 32

ADDO
Addition with Offset

Format : addo dst, src

Operation: dst � dst + src - 128

Description: The content of the RAM location specified as source is added to the
content of the destination location, the values 128 is subtracted from
the result that is stored in the destination. This operation allows the
use of the signed byte considering the values between 0 and 127 as
negative, 128 as 0 and the values between 129 and 255 as positive.

Flags: Z sets if result is zero , cleared otherwise.
C sets if overflow, cleared otherwise.
S sets if underflow, cleared otherwise.

Bytes 3

Cycles 20

Example

If the RAM location 20 contains the value 100 and the RAM location
11 contains the value 40, then the instruction:

add 20, 11 00100001 00010100
00001011

causes the location 20 of the RAM to be loaded with the value 12.

If the location 20 contains the value 100 and the location 11 contains
the value 10, the instruction causes the location 20 to be loaded with
the value 238 (result + 256) and the S flag to be set. If the location 20
contains the value 200 and the location 11 contains the value 228, the
instruction causes the location 20 to be loaded with the value 44 (re-
sult - 256) and the C flag to be set.

ASSEMBLER INSTRUCTION SET

C - 33

AND
Logical AND

Format: and dst, src

Operation: Dst � dst AND src

Description: The instruction logically ANDs the content of the RAM locations specified as
source and as destination, leaving the result in the destination.

Flags: Z sets if result is zero, cleared otherwise.
C not affected
S not affected

Bytes: 3

Cycles: 17

Example: If the RAM location 20 contains the value 240 (11110000b) and the RAM lo-
cation 11contains the value 85 (01010101b), then the instruction

and 20, 11 001000100 0010100 00001011
causes the location 20 of the RAM to be loaded with the value 80
(01010000b).

FUZZYSTUDIO™ 4.1

C - 34

ASL
Arithmetic Shift Left

Format: asl dst

Operation: C � dst (7)
dst (0) � 0
dst (n+1) � dst(n) where n = 0-6

Description: The instruction shifts one bit left the content of the RAM location specified as
destination. The most significative bit is placed in the C flag and the less sig-
nificative bit is loaded with 0.

Flags: Z sets if result is zero, cleared otherwise.
C sets if MSB is set, cleared otherwise.
S not affected.

Bytes: 2
Cycles: 15

Example: if the RAM location 20 contains the value 85 (01010101b), then the instruc-
tion:

asl 20 001010010 0010100

causes the location 20 of the RAM to be loaded with the value 170
(10101010b).

If the RAM location 20 contains the value 150 (10010110b), then the instruc-
tion causes the location 20 of the RAM to be loaded with the value 44
(00101100b) and the C flag to be set.

ASSEMBLER INSTRUCTION SET

C - 35

ASR
Arithmetic Shift Right

Format: asr dst

Operation: S � dst (0)
dst (7) � 0
dst (n) � dst (n+1) where n = 0-6

Description: The instruction shifts one bit right the content of the RAM location specified
as destination. The less significative bit is placed in the S flag and the most
significative bit is loaded with 0.

Flags: Z sets if result is zero, cleared otherwise.
C not affected.
S sets if LSB is set, cleared otherwise.

Bytes: 2
Cycles: 15

Example: If the RAM location 20 contains the value 170 (10101010b), then the instruc-
tion:

asr 20 001010100 0010100

causes the location 20 of the RAM to be loaded with the value 85
(01010101b).

If the RAM location 20 contains the value 85 (01010101b), then the instruc-
tion causes the location 20 of the RAM to be loaded with the value 42
(00101010b) and the S flag to be set.

FUZZYSTUDIO™ 4.1

C - 36

CALL
Subroutine Call

Format: call label

Operation: SP � SP -2 (SP = Stack Pointer)
(SP) �PC (PC = Program Counter)
PC label

Description: The content of the Program Counter (PC) is pushed to the top of the System
Stack and the location address specified by the symbol label is loaded into
the PC in order to point to the first instruction of the subroutine.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 17

Example: If the label “subx”, that indicates the first location of a subroutine, is located to
the address 2500 (00001001 11000100), then the instruction:

call subx 01000111 00001001 11000100

causes the PC to be loaded with the value 2500 and the program to jump to
the subroutine labelled “subx”.

ASSEMBLER INSTRUCTION SET

C - 37

DEC
Decrement

Format: dec dst

Operation: dst � dst - 1

Description: The content of the specified RAM location is decremented by 1.

Flags: Z sets if result is zero, cleared otherwise.
C not affected.
S sets if underflow, cleared otherwise.

Bytes: 2
Cycles: 15

Example: If the RAM location 20 contains the value 50, then the instruction:

dec 20 001011000 0010100

causes the location 20 of the RAM to be loaded with the value 49.

If the RAM location 20 contains the value 0, then the instruction causes the
location 20 to be loaded with the value 255 and the S flag to be set.

FUZZYSTUDIO™ 4.1

C - 38

DIV
Division (16/8)

Format: dec dst, src

Operation: [dst dst+1] / src :
dst � remainder
dst + 1 � result

Description: The content of the destination RAM location pair (the 16 bit dividend is com-
posed by the dst (MSB) and dst+1 (LSB) locations) is divided by the source.
The LSB of the destination location pair (dst+1) is loaded with the result, the
MSB (dst) is loaded with the remainder. In case of overflow the MSB and the
LSB are loaded both with 255.

Flags: Z sets if result is zero, cleared otherwise.
C sets if overflow, cleared otherwise.
S sets if remainder is zero, cleared otherwise.

Bytes: 3
Cycles: 26

Example: If the RAM location pair 20 and 21 contains the value 1523 and the location
40 contains the value 30, then the instruction:

div 20, 40 00100011 00010100 00101000

causes the location 21 of the RAM to be loaded with the value 50 and the lo-
cation 20 with the value 23.

ASSEMBLER INSTRUCTION SET

C - 39

FUZZY
Fuzzy Computation

Format: fuzzy

Operation: Start fuzzy output computation

Description: This instruction transfers the control to the Fuzzy Computation Unit for the
evaluation of a single fuzzy output. After this instruction, only fuzzy instruc-
tions can be inserted until the instruction OUT is specified. If more fuzzy out-
put have to be computed, the instruction FUZZY should be specified again
after the instruction OUT.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 6

Example: The following instruction:

fuzzy 10000000

starts a fuzzy computation section.

FUZZYSTUDIO™ 4.1

C - 40

HALT
Halt

Format: halt

Operation: Clock Master halted.

Description: This instruction stops the clock master so that the CPU and the peripherals
are turned-off. It is possible to exit from the halt mode by means of an exter-
nal interrupt or a chip reset.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7 - 13

Example: After the instruction:

halt 00110111

the device is put in halt mode and the program is stopped until an external in-
terrupt or a chip resets.

ASSEMBLER INSTRUCTION SET

C - 41

INC
Increment

Format: inc dst

Operation: dst � dst + 1

Description: The content of the specified RAM location is incremented by 1.

Flags: Z sets if result is zero, cleared otherwise.
C sets if overflow, cleared otherwise.
S not affected.

Bytes: 2
Cycles: 15

Example: If the RAM location 20 contains the value 50, then the instruction:

inc 20 00101101 00010100

causes the location 20 of the RAM to be loaded with the value 51.

If the RAM location 20 contains the value 255, then the instruction causes the
location 20 to be loaded with the value 0 and the S and Z flags to be set.

FUZZYSTUDIO™ 4.1

C - 42

JP
Unconditional Jump

Format: jp label

Operation: PC � label (PC = Program Counter)

Description: This instruction causes the address value specified by the symbol “label” to
be loaded into the Program Counter (PC) and the Program jumps to the in-
struction located at the address labeled with “label”.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 11

Example: If the Program Memory location 2500 (00001001b 11000100b) is labeled
with “labelx”, then the instruction:

jp labelx 01000000 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that lo-
cation.

ASSEMBLER INSTRUCTION SET

C - 43

JPC
Jump if C Flag Set

Format: jpc label

Operation: if C=1, PC � label (PC = Program Counter)

Description: If C flag is set, this instruction causes the address value specified by the sym-
bol “label” to be loaded into the Program Counter (PC) and the Program
jumps to the instruction located at the address labeled with “label”. Other-
wise the control passes to the next instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 11 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labeled
with “labelx”, and the C flag is set then the instruction:

jpc labelx 01000101 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that lo-
cation.

FUZZYSTUDIO™ 4.1

C - 44

JPNC
Jump if C Flag Not Set

Format: jpnc label

Operation: if C=0, PC � label (PC = Program Counter)

Description: If C flag is not set, this instruction causes the address value specified by the
symbol “label” to be loaded into the Program Counter (PC) and the Program
jumps to the instruction located at the address labeled with “label”. Other-
wise the control passes to the next instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 11 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labeled
with “labelx”, and the C flag is not set then the instruction:

jpnc labelx 01000110 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that lo-
cation.

ASSEMBLER INSTRUCTION SET

C - 45

JPNS
Jump if S Flag Not Set

Format: jpns label

Operation: if S=0, PC � label (PC = Program Counter)

Description: If S flag is not set, this instruction causes the address value specified by the
symbol “label” to be loaded into the Program Counter (PC) and the Program
jumps to the instruction located at the address labeled with “label”. Other-
wise the control passes to the next instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 11 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labeled
with “labelx”, and the S flag is not set then the instruction:

jpns labelx 01000010 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that lo-
cation.

FUZZYSTUDIO™ 4.1

C - 46

JPNZ
Jump if Z Flag Not Set

Format: jpnz label

Operation: if Z=0, PC � label (PC = Program Counter)

Description: If Z flag is not set, this instruction causes the address value specified by the
symbol “label” to be loaded into the Program Counter (PC) and the Program
jumps to the instruction located at the address labeled with “label”. Other-
wise the control passes to the next instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 11 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labeled
with “labelx”, and the Z flag is not set then the instruction:

jpnz labelx 01000100 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that lo-
cation.

ASSEMBLER INSTRUCTION SET

C - 47

JPS
Jump if S Flag Set

Format: jps label

Operation: if S=1, PC � label (PC = Program Counter)

Description: If S flag is set, this instruction causes the address value specified by the sym-
bol “label” to be loaded into the Program Counter (PC) and the Program
jumps to the instruction located at the address labeled with “label”. Other-
wise the control passes to the next instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 11 if jump, 10 otherwise

Example: If the Program Memory location 2500 (000
01001b 11000100b) is labeled with “labelx”, and the S flag is set then the in-
struction:

jps labelx 01000001 00001001 1000100

loads the value 2500 into the PC and transfers the program control to that lo-
cation.

FUZZYSTUDIO™ 4.1

C - 48

JPZ
Jump if Z Flag Set

Format: jpz label

Operation: if Z=1, PC � label (PC = Program Counter)

Description: If Z flag is set, this instruction causes the address value specified by the sym-
bol “label” to be loaded into the Program Counter (PC) and the Program
jumps to the instruction located at the address labeled with “label”. Other-
wise the control passes to the next instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 11 if jump, 10 otherwise

Example: If the Program Memory location 2500 (00001001b 11000100b) is labeled
with “labelx”, and the Z flag is set then the instruction:

jpz labelx 01000011 00001001 11000100

loads the value 2500 into the PC and transfers the program control to that lo-
cation.

ASSEMBLER INSTRUCTION SET

C - 49

LDCE
Load Configuration, EPROM

Format: ldce dst, src

Operation: dst � src

Description: The instruction loads into the configuration register specified as destination
the data contained in the Program Memory source location in the current
page, specified with the PGSET instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: if the Program Memory location 300 contains the value 240 and the current
page is set to 1 (256+44=300), then the instruction:

ldce 12, 44 00011011 00001100 00101100

causes the configuration register 12 to be loaded with the value 240.

FUZZYSTUDIO™ 4.1

C - 50

LDCR
Load Configuration, RAM

Format ldcr dst, src

Operation: dst � src

Description: The instruction loads into the configuration register specified as destination
the data contained in the RAM location specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: If the RAM location 80 contains the value 64 then the instruction

ldcr 12, 80 00010100 00001100 01010000

causes the configuration register 12 to be loaded with the value 64.

ASSEMBLER INSTRUCTION SET

C - 51

LDFR
Load Fuzzy, RAM

Format: ldfr dst, src

Operation: dst � src

Description: The instruction loads into Fuzzy input registers (0 to 7) specified as destina-
tion the data contained in the RAM location specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: If the RAM location 80 contains the value 64 then the instruction

ldfr 2, 80 00011000 00000010 01010000

causes the fuzzy input register 2 to be loaded with the value 64, that is used
as crisp input value of the third fuzzy variable.

FUZZYSTUDIO™ 4.1

C - 52

LDPE
Load Peripheral, EPROM Indirect

Format: ldpe dst, (src)

Operation: dst � (src)

Description: The instruction loads into the Output Peripheral Register specified as desti-
nation the data contained in the EPROM location which address (in the page
set with the PGSET instruction) is contained in the location specified as
source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 17

Example: If the currently EPROM page set is 2, the RAM location 30 contains the value
10 and the EPROM location 522 (256*2+10) contains the value 100, then the
instruction:

ldpe 2, (30) 00010110 00000010 00011110

causes the Output Peripheral Register 2 to be loaded with the value 100.

ASSEMBLER INSTRUCTION SET

C - 53

LDPR
Load Peripheral, RAM

Format: ldpr dst, src

Operation: dst � src

Description: The instruction loads into the Output Peripheral Register specified as desti-
nation the data contained in the RAM location specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: If the RAM location 30 contains the value 100, then the instruction:

ldpr 2, 30 00010101 00000010 00011110

causes the Output Peripheral Register 2 to be loaded with the value 100.

FUZZYSTUDIO™ 4.1

C - 54

LDRC
Load RAM, Constant

Format: ldrc dst, const

Operation: dst � const

Description: The instruction loads into the RAM location specified as destination the con-
stant specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: The following instruction:

ldrc 24, 130 00010000 00011000 10000010

causes the RAM location 24 to be loaded with the value 130.

ASSEMBLER INSTRUCTION SET

C - 55

LDRE
Load RAM, EPROM

Format: ldre dst, src

Operation: dst � src

Description: The instruction loads into the RAM location specified as destination the con-
tents of the EPROM location specified as source (in the page set with the
PGSET instruction).

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 16

Example: If the currently set EPROM page is 2 and the address 522 (256*2+10) con-
tains the value 100, then the following instruction:

ldre 24, 10 00010001 00011000 00001010

causes the RAM location 24 to be loaded with the value 100.

FUZZYSTUDIO™ 4.1

C - 56

(LDRE)
Load RAM Indirect, EPROM Indirect

Format: ldre (dst), (src)

Operation: (dst) � (src)

Description: The instruction loads into the RAM location, which address is contained in
the RAM location specified as destination, the contents of the EPROM loca-
tion, which address is contained in the RAM location specified as source (in
the page set with the PGSET instruction).

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 18

Example: If the currently set EPROM page is 2, the RAM location 20 contains the value
10, the address 522 (256*2+10) contains the value 100 and the RAM location
24 contains the value 50, then the following instruction:

ldre (24), (10) 00010010 00011000 00001010

causes the RAM location 50 to be loaded with the value 100.

ASSEMBLER INSTRUCTION SET

C - 57

LDRI
Load RAM, Peripheral Input

Format: ldri dst, src

Operation: dst � src

Description: The instruction loads into the RAM location specified as destination the con-
tents of the Input Peripheral Register specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 14

Example: If the Input Peripheral Register 10 contains the value 100, then the following
instruction:

ldri 24, 10 0 0010011 00011000 00001010

causes the RAM location 24 to be loaded with the value 100.

FUZZYSTUDIO™ 4.1

C - 58

LDRR
Load RAM, RAM

Format: ldrr dst, src

Operation: dst �src

Description: The instruction loads into the RAM location specified as destination the con-
tents of RAM location specified as source.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 3
Cycles: 16

Example: if the RAM location 10 contains the value 100, then the following instruction:

ldrr 24, 10 00010111 00011000 00001010

causes the RAM location 24 to be loaded with the value 100.

ASSEMBLER INSTRUCTION SET

C - 59

MDGI
Macro Disable Global Interrupts

Format: mdgi

Operation: all interrupts disabled

Description: This instruction is used by the FUZZYSTUDIO Compiler in order to disable
the interrupts at the beginning of a Compiler Macro.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7 if GI already disabled, 16 otherwise

Example: After the instruction:

mdgi 00110100

interrupts cannot be serviced until the Global Interrupt Mask (GI) is again en-
abled with a MEGI instruction.

FUZZYSTUDIO™ 4.1

C - 60

MEGI
Macro Enable Global Interrupts

Format: megi

Operation: not masked interrupts enabled

Description: This instruction is used by the FUZZYSTUDIO Compiler in order to enable
not masked interrupts after the end of a Compiler Macro. Interrupts cannot
be enabled if a UDGI instruction, not followed by a UEGI instruction, has
been specified.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7 if GI already enabled, 16 otherwise

Example: If a UDGI instruction, not followed by a UEGI instruction, has not been speci-
fied, after the instruction:

megi 00110101

not masked interrupts are enabled.

ASSEMBLER INSTRUCTION SET

C - 61

MIRROR
Byte Mirror

Format: mirror dst

Operation: dst(n) �dst(7-n)

Description: This instruction modifies the content of the specified RAM location, inverting
the order of the bits.

Flags: Z set if result is zero, cleared otherwise.
C not affected.
S not affected.

Bytes: 2
Cycles: 15

Example: If the RAM location 24 contains the value 142 (10001110b), after the instruc-
tion:

mirror 24 00101011 00011000

the RAM locations will contain the value 113 (01110001b).

FUZZYSTUDIO™ 4.1

C - 62

MULT
Multiplication (8 X 8)

Format: mult dst, src

Operation: [dst dst+1] � dst * src

Description: The instruction computes the product between the values contained in the
RAM locations specified as destination and as source. The result is a 16 bit
number which the most significative byte is stored in the destination location
and the least significative is stored in the location after the destination.

Flags: Z set if result is zero, cleared otherwise.
C not affected.
S not affected.

Bytes: 3
Cycles: 19

Example: If the RAM location 20 contains the value 100 and the location 40 contains
the value 30, then the instruction:

mult 20, 40 00100100 00010100 00101000

causes the location 20 of the RAM to be loaded with the value 11 (MSB) and
the location 21 with the value 184 (256*11+184=30*100=3000).

ASSEMBLER INSTRUCTION SET

C - 63

NOP
No Operation

Format: nop

Operation: No operation.

Description: No operation is carried out with this instruction. It is typically used for timing
delay.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 6

Example: The instruction:

nop 10000001

causes the program control to pass to the next instruction after 6 clock cy-
cles.

FUZZYSTUDIO™ 4.1

C - 64

NOT
Logical NOT

Format: not dst

Operation: dst � 255-dst

Description: This instruction negates each bit of the location specified as destination.

Flags: Z sets if result is zero, cleared otherwise.
C not affected.
S not affected.

Bytes: 2
Cycles: 15

Example: If the location 24 contains the value 100 (01100100b), the instruction:

not 24 00100101 00011000

causes the location 24 to be loaded with the value 155 (10011011b).

ASSEMBLER INSTRUCTION SET

C - 65

OR
Logical OR

Format: or dst, src

Operation: dst � dst OR src

Description: The instruction logically ORs the content of the RAM locations specified as
source and as destination, leaving the result in the destination.

Flags: Z sets if result is zero, cleared otherwise.
C not affected.
S not affected.

Bytes: 3
Cycles: 17

Example: If the location 24 contains the value 100 (01100100b), and the location 10
contains the value 15 (00001111b), then the instruction:

or 24, 10 00100110 00011000 00001010

causes the location 24 to be loaded with the value 111 (01101111b).

FUZZYSTUDIO™ 4.1

C - 66

PGSET
Page Set

Format: pgset const

Operation: Page pointer setting.

Description: This instruction sets the current EPROM page to the const page, so that the
locations that can be addressed are in the range [256*const , 256*cost+255]
WARNING: the page pointer is modified by the jump instructions (JP, CALL,
JPC, etc.) so the PGSET instruction should be specified again before ac-
cessing an EPROM location if a jump instruction have been used after the
last PGSET.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 9

Example: The instruction:

pgset 4 00011001 00000100

sets the current page to the fifth page (addresses 1024-1279).

ASSEMBLER INSTRUCTION SET

C - 67

RET
Return from Subroutine

Format: ret

Operation: PC �(SP) (PC = Program Counter)
SP � SP+ 2 (SP = Stack Pointer)

Description: This instruction performs the return from a subroutine. It determines the
jump of the program to the line after the subroutine call instruction.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 12

Example: If the value to the top of the stack is 0e4h, the instruction:

ret 01001000

determines the PC to be loaded with the value 0e4h and the previous value to
be lost.

FUZZYSTUDIO™ 4.1

C - 68

RETI
Return from Interrupt

Format: reti

Operation: PC � (SP) (PC = Program Counter)
SP � SP + 2 (SP = Stack Pointer)
flag � saved flags

Description: This instruction performs the return from a interrupt service routine. It deter-
mines the return of the device to the state it was before the interrupt. The
value of the PC is popped from the top of the stack, together with the saved
flags.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 12

Example: If the value to the top of the stack is 0e4h, the instruction:

reti 00110000

determinates the PC to be loaded with the value 0e4h, the previous value to
be lost and the flags status before the interrupt to be restored.

ASSEMBLER INSTRUCTION SET

C - 69

RINT
Reset Interrupt

Format: rint const

Operation: Interrupt No. const Pending bit �0

Description: This instruction resets the pending bit of the interrupt No.const. After this in-
struction the request of interrupt is cancelled and will not be acknowledged

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 8

Example: If the interrupt 3 source has generated an interrupt request remaining pend-
ing (being the interrupt masked or globally disabled), after the instruction

rint 3 00110001 00000011

the interrupt request is cancelled and will be serviced when enabled only if a
successive request is sent.

FUZZYSTUDIO™ 4.1

C - 70

SUB
Subtraction

Format: sub dst, src

Operation: Dst � dst - src

Description: The content of the RAM location specified as source is subtracted to the con-
tents of destination location, leaving the result in the destination.

Flags: Z sets if result is zero, cleared otherwise.
C not affected.
S sets if underflow, cleared otherwise.

Bytes: 3
Cycles: 17

Example: if the RAM location 20 contains the value 45 and the RAM location 11 con-
tains the value 15, then the instruction

sub 20, 11 00100111 00010100 00001011

causes the location 20 of the RAM to be loaded with the value 30.

If the location 20 contains the value 80 and the location 11 contains the value
100, the instruction causes the location 20 to be loaded with the value 236
(256 + result) and the S flag to be set.

ASSEMBLER INSTRUCTION SET

C - 71

SUBO
Subtraction with Offset

Format: subo dst, src

Operation: Dst � dst + 128 - src

Description: The value 128 is added to the content of the RAM location specified as desti-
nation, then the content of source location is subtracted to the result and
stored into the destination location. This operation allows the use of the
signed byte considering the values between 0 and 127 as negative, 128 as 0,
and the values between 129 and 255 as positive.

Flags: Z sets if result is zero, cleared otherwise.
C sets if overflow, cleared otherwise.
S sets if underflow, cleared otherwise.

Bytes: 3
Cycles: 20

Example: if the RAM location 20 contains the value 45 and the RAM location 11 con-
tains the value 65, then the instruction

subo 20, 11 00101000 00010100 00001011

causes the location 20 of the RAM to be loaded with the value 108.

If the location 20 contains the value 200 and the location 11 contains the
value 20, the instruction causes the location 20 to be loaded with the value 52
(result-256) and the C flag to be set.If the location 20 contains the value 20
and the location 11 contains the value 200, the instruction causes the loca-
tion 20 to be loaded with the value 204 (256+result) and the S flag to be set.

FUZZYSTUDIO™ 4.1

C - 72

UDGI
User Disable Global Interrupts

Format: udgi

Operation: all interrupts disabled

Description: This instruction can be used by the User in order to disable globally the inter-
rupts.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7 if GI already disabled, 16 otherwise

Example: After the instruction:

udgi 00110010

interrupts cannot be serviced until the Global Interrupt Mask (GI) is again en-
abled with a UEGI instruction.

ASSEMBLER INSTRUCTION SET

C - 73

UEGI
User Enable Global Interrupts

Format: uegi

Operation: not masked interrupts enabled

Description: This instruction can be used by the Compiler in order to enable not masked
interrupts. Interrupts cannot be enabled if a MDGI instruction, not followed
by a MEGI instruction, has been specified.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7 if GI already enabled, 16 otherwise

Example: If a MDGI instruction, not followed by a MEGI instruction, has not been speci-
fied, after the instruction:
uegi 00110011

not masked interrupts are enabled.

FUZZYSTUDIO™ 4.1

C - 74

WAITI
Wait for Interrupt

Format: wait

Operation: wait for interrupt

Description: This instruction stops the program execution until an interrupt from an active
source is requested. During the wait state some functionalities of the device
are turned off in order to lower the power consumption.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7 if GI already enabled, 16 otherwise

Example: The instruction:

waiti 00110110

puts the chip in wait mode and stops the program execution, waiting for an in-
terrupt signal. If there are no active interrupt sources, the device can exit
from the wait mode only with a reset.

ASSEMBLER INSTRUCTION SET

C - 75

WDTRFR
Watchdog Refresh

Format: wdtrfr

Operation: Watchdog counter enabled or refreshed

Description: If the Watchdog is disabled, this instruction enables the watchdog and the
counter starts to count from the configured value. If the watchdog is already
enabled, this instruction restarts the counting from the beginning.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 7

Example: After the instruction:

wtdrfr 10000010

the Watchdog is enabled and the value of counting stored in the Configura-
tion Register 2 is loaded in the Watchdog counter.

FUZZYSTUDIO™ 4.1

C - 76

WDTSLP
Watchdog Sleep

Format: wdtslp

Operation: Watchdog disabled

Description: This instruction disables the Watchdog, avoiding the chip reset.

Flags: Z not affected.
C not affected.
S not affected.

Bytes: 1
Cycles: 6

Example: After the instruction:

wtdslp 10000011

the Watchdog is disabled stopping the counter .

ASSEMBLER INSTRUCTION SET

C - 77

ST52 Assembler Pseudo Instructions:

The Assembler pseudo instructions have not direct correspondence with the machine code;
this is obtained after the elaboration of the supplied data by means of the Assembler.

The Assembler pseudo instructions are used to set the data for the Fuzzy Computation, the
Assembler then optimizes these data considering the code format used from the Fuzzy
Computation Unit.

There are also the pseudo instructions to set data and to set the current location in EPROM
Memory.

CON
Consequent

Format: con const

Operation: Dividend Register �Dividend register + Teta * const
Divisor Register �Divisor Register + Teta

Description: This instruction computes the values to add in the defuzzyfication registers,
at the end of the single rule. The specified constant is the crisp value repre-
senting the output crisp membership function: it is multiplied by the last fuzzy
operation result.

DATA
EPROM Data

Format: data page, addr, value

Operation: none

Description: This pseudo instruction indicates to the Assembler to store data in the
EPROM. The location in the address of the specified page is loaded with the
specified value.

FUZZYSTUDIO™ 4.1

C - 78

IRQ
Interrupt Request Vector

Format: irq int, label

Operation: none

Description: This pseudo-instruction indicates the interrupt vectors to the Assembler.
The argument represents respectively the interrupt and the relative interrupt
service routine first address, pointed with a label.

FZAND
Fuzzy AND

Format: fzand

Operation: K �MIN(stack(0) , stack(1))

Description: This instruction computes the Fuzzy AND operation (minimum) between the
two values stored in the Fuzzy stack, previously loaded with LDP, LDN or
LDK instructions, and stores the result in the register K.

FZOR
Fuzzy OR

Format: fzor

Operation: K �MAX(stack(0) , stack(1))

Description: This instruction computes the Fuzzy OR operation (maximum) between the
two values stored in the Fuzzy stack, previously loaded with LDP, LDN or
LDK instructions, and stores the result in the register K.

ASSEMBLER INSTRUCTION SET

C - 79

LDK
Load Stack with K Register

Format: ldk

Operation: stack(0) � K

Description: The instruction loads in the Fuzzy stack the value temporarily stored in the
Fuzzy register K that is the result of the last Fuzzy operation.

LDM
Load Stack with M Register

Format: ldm

Operation: stack(0) �M

Description: The instruction loads in the Fuzzy stack the value temporarily stored in the
Fuzzy register M with a previous SKM operation.

LDN
Load Negative Alpha Value

Format: ldn var, mbf

Operation: stack � 15 - computed alpha value related to mbf M.F. of var Variable

Description: The instruction performs the fuzzyfication and loads in the stack the negated
alpha value of the mbf M.F. of the var Variable.

FUZZYSTUDIO™ 4.1

C - 80

LDP
Load Positive Alpha Value

Format: ldp var, mbf

Operation: stack � computed alpha value related to mbf M.F. of var Variable

Description: The instruction performs the fuzzyfication and loads in the stack the alpha
value of the mbf M.F. of the var Variable.

MBF
Membership Function

Format: mbf num, lvd, vtx, rvd

Operation: none

Description: This pseudo instruction indicates to the Assembler to store a Membership
Function data in the EPROM Memory. The M.F. number is specified as first
argument, followed by the left semibase width, the vertex position and the
right semibase width. The first (of three) EPROM location where the data are
stored is the current program line.

OUT
Fuzzy Output

Format: out dst

Operation: dst �current fuzzy output defuzzyfication result.

Description: This instruction performs the defuzzyfication for the computation of the cur-
rent fuzzy output and store the result in the destination RAM location.

ASSEMBLER INSTRUCTION SET

C - 81

SETMEM
Set Memory

Format: setmem page, addr

Operation: none

Description: This pseudo-instruction indicates that the next current program line must be
the one in the specified address of the specified page.

SKM
Store K Register in M Register

Format: skm

Operation: M �K

Description: This instruction loads the result of the last performed Fuzzy operation
(stored in the temporary register K) in the temporary buffer M.

FUZZYSTUDIO™ 4.1

C - 82

D -1

Appendix D - FUZZY LOGIC INTRODUCTION.
Human language and Indeterminacy

In 1950 Alan Turing proposed a way to test computers for intelligence. He argued that if we
have a human (the interrogator) talking via keyboard and screen with another human and a
computer, and the interrogator is not able to decide which one is the human and which one is
the computer just from the analysis of the answers to his/her questions, then we have to ad-
mit that the computer (or program) is intelligent. So far, no computer program able to pass
this test has been written.

It is very clear that the difficulties involved in designing such a machine (or software) are as
complex as the human way of thinking. The interrogator can ask absurd questions such as:
“Yesterday I saw a donkey flying over my house, what do you think of that?”, therefore the
program needs to have a huge database of facts concerning animals and things and deduc-
tion rules of common-sense reasoning. Moreover, one of the main problems is the commu-
nication language. Human natural languages are very imprecise and ambiguous. However
they are understood and used by humans in their everyday life. Part of our intelligent behav-
iour certainly consists of this understanding common language capability. However, it is not
easy (and it is indeed a very challenging task) to fully understand how humans accomplish
this task and, as a by product, how to teach machines to do it. For instance, we make a
heavy use of adjectives, that is to say words whose task is to classify objects. The objects
classified by the adjectives belong to any universe of discourse which is the set of all possi-
ble objects to which the adjective may be applied. Such universes of discourse may depend
upon the context. For instance, the adjective tall may be applied to humans or to buildings,
etc. Computers are able to understand very well adjectives such as even or odd, but how
can they deal with big or small when referred to numbers? Today’s machines are based on
classical logic. A logic comprises a formal language for making statements about (certain)
objects and reasoning about properties of these objects. Classical logic has been for many
years the only mathematical mean of reasoning and it has been extensively applied in many
applications related to artificial intelligence and control. Classical logic is black and white (0
or 1). It relates to a binary world which is the same one on which our computer are (mostly)
based on. Even or odd are binary adjectives. A number is either even or odd. No other possi-
bilities are allowed. But when can we say that a number is big or small? Likewise, when we
say that a certain person is married or single we are making a statement which is 0-1: a per-
son is either married or single, no other possibilities. However when we say that a person is
young or old we are making an imprecise yet for human beings useful and well understood
statement. If we wanted to define the adjective young by means of classical logic we would
need to find a threshold value, say for instance 30 years, so that if a person is less than thirty
then is young, more than thirty is old. However, we would have the unreasonable result that
in a matter of seconds one person would change status from young to old.

Fuzzy Logic (and more in general Fuzzy Set Theory) provides a mathematical tool to deal
with such a kind of uncertainty and imprecision.

FUZZYSTUDIO™4.1

D -2

A General Overview

Despite the meaning of the word fuzzy, Fuzzy Logic is a precise and exact mathematical in-
strument which can be used for control systems with the advantage of simplifying the devel-
opment of application of any complexity. The above claimed development simplification is
determined by the possibility to express the system knowledge by means of linguistic ex-
pressions rather than mathematical equations, as needed by traditional techniques, which
in many cases are a quite complicated way to express human experience.

The system development is also simplified because one can use Control Rules which are lo-
cally defined. By combining the linguistic and local approaches of the Rules, it is possible to
evaluate in a very simple way the effect of a single rule and in turn the way of modifying the
rule to improve the results.

To better clarify how to transfer human experience to a fuzzy expert system we will use a
simple but complete example regarding the driving of a vehicle in proximity of a road cross-
ing controlled by a light.

The information we can use is:

• Color of the light

• Distance from the crossing

• Vehicle speed

The goal is to control the vehicle speed by means of an action that can be:

• to brake

• to keep the speed

• to accelerate

The linguistic approach

Fuzzy Logic is a formal instrument that partially closes the gap between human reasoning
and computers world. This is possible because we can use reasoning rules which can be ex-
pressed in a linguistic way, that is to say the same way that a human being would express
them to another human being, to teach him/her how to make a decision and act given certain
facts. Both antecedent and consequent part of the rules do not express defined actions but
respectively they are reference conditions and behaviours.

Notice that the consequent part of each rule contains only a qualitative expression of the ac-
tion to be performed, while the quantitative expression of the final decision is determined by
the occurrence of all the rules.

Appendix D - FUZZY LOGIC INTRODUCTION

D -3

Going back to our example we could say:

• IF the light is red AND the speed is High THEN the action is to brake;

• IF the light is red AND the speed is Low AND the crossing is far away THEN the action is
to keep the speed

• IF the light is yellow AND the speed is Medium AND the crossing is far away
THEN the action is to brake........

• IFthe light is green AND the speed is very low AND the crossing is very close
THEN the action is to accelerate

The above action rules are a result of the experience gained in time and to them we refer ev-
ery time we approach a road light.

Every time we have to make a decision we use rules specifying the correct behaviour under
well known conditions, which are used as a reference to be compared with the observed
data.

In our example, the observed data are the road light colour, the distance from the road
crossing and the vehicle speed, which might be obtained from the speed meter rather than
visually approximated with respect to the external world; the decision to make is related to
the pressure to be exercised on the brakes or on the accelerator.

It is important to stress once again that the decision is determined by all the rules in a way
which is proportional to their degree of truth.

By comparing
The Observed Data

light is green, speed I smedium, the crossing is
not far

with the Reference Term

Red, Yellow, Green;
Very Low, Low, Medium, High;
Very far away, far away, far away, close, very
close

we obtain a degree of truth which deter-
mines how much the observed condition is
really the Hypothesis of the rules and con-
sequently how much the final decision must
be similar to the Reference Conclusion
expressed on the rules

IF the light is green AND the speed is Medium
AND the crossing is away

THEN the action is to keep the speed

FUZZYSTUDIO™4.1

D -4

50 Km/h 70 Km/h 60 Km/h

binary set fuzzy set

Fig.1

Fuzzy Logic, Fuzzy sets and Membership Functions

To allow the computer to make decisions according to the linguistic rules we must make
possible for it to evaluate the quantity that we have called Similarity Degree of the observed
data and the Reference Terms. This can be done by using Fuzzy Logic.

Fuzzy Logic is an extension of the binary or boolean logic on which is based the mathemati-
cal reasoning usually encountered in schools or universities. To briefly introduce fuzzy logic
we will start from binary logic and we will sketch their differences.

A boolean or binary set is a collection of objects all verifying the same condition (the charac-
teristic property of the set). For instance, we could define the set of Medium Speeds as the
collection of all the speed values between 50 e 70 Km/h. In this way we are implicitly saying
that all values which are less than 50 Km/h or more than 70 Km/h do not belong to the set of
Medium Speeds.

A Fuzzy set is associated with a Reference Term (for example Red, Yellow, Green for the
light colour) and is characterized by a collection of objects which are similar to it. If, for in-
stance, we decide that a medium speed is 60 Km/h, the closer a certain speed value is to 60
Km/h, the higher is its similarity degree to 60 Km/h. This similarity degree is what is denoted
as Membership Degree to the fuzzy set. All the Membership Degree associated to a fuzzy
set generate a shape called Membership Function.

The difference between the binary set and the fuzzy set Medium Speed is illustrated in fig. 1.

In this way, by using Boolean logic the made decision will be the same for all the values be-
tween 50 e 70 Km/h; moreover, we might obtain a completely different action in going from
50 Km/h to 49.999.. Km/h. On the other hand, if we use Fuzzy Logic we would have an an-
swer which will proportionally depend on the membership degree .

Appendix D - FUZZY LOGIC INTRODUCTION

D -5

Fuzzy Reasoning

It is important to stress at this point that in order to make a decision it is necessary to have an
experience in the field, which in fuzzy terms means that we need to have defined, for each
input and output variable, the universe of discourse (i.e. the set of elements where it is de-
fined), the fuzzy sets and the related membership functions, and to have identified the infer-
ence rules.

The Fuzzy Reasoning is composed by two computational steps, which permit to infer fuzzy
value, for the output variables, starting from fuzzy value, for the input variables.

These steps are:

1 Alpha-values computation: given the observed values we compute the membership de-
gree to the fuzzy sets by means of the membership functions. For instance, if we suppose
that we have the following data:

• Light colour: green

• Speed:53 Km/h

• Distance from crossing:350 m

The operation of alpha-values computation provides us the degrees of memberships of 53
Km/h to the fuzzy sets Very Low, Low, Medium, High etc.; the degrees of membership of 350
m to the fuzzy sets very far away, far away, close, very close, etc. and combines this values
in order to compute the strength of activation of each fuzzy rule.

In figure 2 we give a pictorial representation of the computation of the membership degree

of 53 Km/h to the fuzzy set Medium Speed.

Medium Speed fuzzy set

60 Km/h53 Km/h

the alpha-value corresponds

to the intersection point

between the observed data

and the membership function

�

Fig. 2

FUZZYSTUDIO™4.1

D -6

SENSORS FUZZY
REASONING

SENSORS ACTUATORS

Fuzzyfication Defuzzyfication

Fig. 3

2 Fuzzy Inference: this operation formalizes the fuzzy reasoning by using the fuzzy rules
and the alpha-values to deduce the fuzzy output.

In order to use fuzzy logic capability in real applications, involving crisp values which are
usually supplied by sensors for the input and provided to the actuators for the output, it is
necessary to accomplish the fuzzification and defuzzification operations to interface be-
tween the real system and the fuzzy inference engine.

Fuzzyfication: given an observed data we fuzzify it by means of the association with a corre-
sponding function. Up to now, to speed up the calculus and to simplify the problems, the ex-
perts have been used to associate to each observed data a crisp value.

Defuzzyfication: this is the last operation of the reasoning process. In this case we obtain a
precise answer and consequently a precise action to be taken.

Appendix D - FUZZY LOGIC INTRODUCTION

D -7

Bitter coffee

Sweet and bitter coffee

Sweet coffee

Fig. 4

The Mathematical Definition of Fuzzy Sets

To better clarify the concept of fuzziness that we are going to mathematically introduce let
us briefly mention the Sugar Paradox. Suppose that we have a cup of coffee with no sugar. If
we add a little grain of sugar certainly we still have a bitter cup of coffee. More in general,
given a bitter cup of coffee by adding a little grain of sugar we are still left with a bitter cup of
coffee. However, this process of adding little grains of sugar will eventually produce a sweet
cup of coffee. From a classical logic point of view we have a paradox. What is happening in
this case is that the passage from bitter to sweet is continuous and not abrupt as classical
logic would want. If we consider then the sets of sweet cups of coffee and bitter cups of cof-
fee we have the situation described in fig. 4.

The border between sweet and bitter is not crisp but fuzzy. So for every element of the gray
area we have a certain amount of indeterminacy concerning its sweetness. Is this indeter-
minacy of a statistical nature ? This is a natural question that scientists working in the field of
fuzzy logic have already answered many times and in many ways. To answer this question
we have to consider two cups of coffee. The first one has a high degree of sweetness. The
sweetness concept is not of probabilistic nature. It has a linguistic value and its meaning
varies from person to person. This means that the same cup of coffee can be sweet with re-
spect to a person and less sweet with respect to another person. Regarding the second cup,
we know that with high probability is sweet and with low probability is bitter. If one wants a
sweet cup of coffee or at least with some sugar in it then the choice is the first cup. By choos-
ing the second cup one may end up drinking a completely bitter coffee (not likely, but still
possible). Choosing the first cup, one will be sure that the coffee is not bitter even though we
do not know exactly the amount of sugar in it.

FUZZYSTUDIO™4.1

D -8

Degree of membership to the fuzzy set Sweet

Amount of sugar in the cup of coffee

0

Fig.5

The Sugar Paradox introduces the notion of sets of a particular nature. These sets are such
that some elements belong to them only up to a certain extent. A cup of coffee with just a lit-
tle sugar cannot be considered bitter but can be considered sweet up to a certain extent
only. This kind of membership cannot be formalized with classical (crisp) set membership
functions defined, for a set A and an element a U� , as:

A a

ifa A

ifa A

() �

�

�

	

�
�

�

�
�

1

0

A : U {0,1}.

which has value 1 (for membership) or 0 (for non membership).

L.A. Zadeh introduced the notion of fuzzy sets in 1965. He defined them as a class of objects
with a continuous membership function, valued into the whole interval [0,1]. This way a cup
of coffee with just a little sugar will have (for instance) a degree of membership 0.1 to the set
of sweet cups of coffee. A possible membership function for the fuzzy set Sweet is shown in
fig. 5.

Thus, a fuzzy set A can be completely characterized by its membership function A defined
as:

A : U [0,1]

where U (the universe of discourse) is the set of elements where A is defined or equivalently
the set of parameters to be taken into account to define the degree of membership.

Appendix D - FUZZY LOGIC INTRODUCTION

D -9

Membership Functions

At this point, a natural question is: where do membership functions come from? The answer
is straightforward. They come from people experience and are related to people knowledge
and understanding of the problem to be modeled. For instance, a membership function for
Hot Temperature when referred to a room temperature will be different from the member-
ship function referred to an oven temperature. Moreover, it may (and generally will) change
from person to person.

Fuzzy Set Operators

To build our mathematical formalism of fuzzy sets we need to define the operators that allow
us to combine fuzzy sets and obtain new ones, i.e. we need to extend to the fuzzy case the
definition of operators such as set complement, union, intersection, and predicates such as
set containment to the fuzzy sets.

To do it we need to introduce a new operator called “Triangular Norm” and commonly known

as t_norm.

Stated I = [0, 1], the t_norm T function is defined as T: I I, and satisfies the following prop-
erties:

1 T(x,1) = x � x � I

2 T(x,y) � T(u,v) if x � u and y � v

3 T(x,y) = T(y,x)� x, y � I

4 T(T(x,y),z) = T(x,T(y,z))� x, y, z � I

where:

� means: for every value
� means: belong to a set
 means: correspondence between function domain and its support
� means: less or equal.

The properties mentioned above are respectively:

1 neutral element existence with respect to T

2 monotony property of T

3 commutative property of T

4 associative property of T

Starting from T it is possible to define a function S: I I as:

S(x,y) = 1- T(1-x, 1-y)

known as t_conorm, maintaining the associative, commutative and monotony proper-
ties and satisfying the condition:

a S(x,0) = x, S(x,1) = 1 � x � I

b T(x,y) = 1- S(1-x,1-y) � x, y � I

FUZZYSTUDIO™4.1

D -10

These operators are the basis for the fuzzy set operators definition. In fact, considering two
fuzzy sets A and B the union and intersection operators are defined in terms of T and S as
follows:

(A � B)(x) = T(A(x),B(x)) � x � X
(A � B)(x) = S(A(x),B(x)) � x � X

The following step is the identification of T and S with some algebraic operators. In literature
they are used to define:

T(x,y) = min (x,y) � x � I
S(x,y) = max (x,y) � x � I

since these two operators satisfy the required properties. It is important to stress that
these are the most commonly used association but they are not the only one. Now we are
able to formulate the fuzzy set operators. By doing this we will find out that certain laws of
the Aristotelian 0-1 logic do not hold any longer.

Set Complement

Let us start with the set complement. The way this operator is classically defined is the fol-
lowing. Given a set A subset of a universe U, the complement of A is the set whose elements
are all and only the elements of U which are not in A, as shown by the (Venn) diagram in fig. 6
Thus, denoted by B the complement of A, for every a in U we have

B(a)=1-A(a)

These means that, if a is in A then its membership degree is 1 (A(a)=1), which implies that
B(a)=0, so a is not in B.

Conversely if a is in B then B(a)=1 and in turn A(a)=0 and so a is not in A. Notice that in partic-
ular for the classical logic holds:

• for every a in the universe of discourse we have that either A(a)=1 or B(a)=1. Equivalently,
we can say that the maximum between A(a) and B(a) is equal to 1. This property is known as
the Law of the excluded middle: every element of the universe of discourse is either in A or in
its complement. No other possibilities are allowed. In terms of set operators:

A � B = U

• for every a in the universe of discourse we have that either A(a)=0 or B(a)=0. Equivalently,
we can say that the minimum between A(a) and B(a) is equal to 0. This property is known as
the Law of non contradiction every element of the universe of discourse cannot be both in A
and in its complement at the same time. In terms of set operators:

A � B = �

What happens when A is fuzzy, that is to say when the border with its complement is not
clearly defined as shown in the fig. 7 ?

In this case we have to define the membership degree to the complement of A of the ele-
ments in the border of A. For consistency with the crisp case we define:

B(a)=1-A(a)

Appendix D - FUZZY LOGIC INTRODUCTION

D -11

We notice however that both the Law of the excluded middle and the Law of non contradic-
tion do not hold any longer. Indeed, if 0<A(a)<1 then 0<B(a)<1, the element a does not be-
long exactly either to A or to its complement but it belongs to any degree to both of them. To
clarify the above consider the following examples:

• A cup of coffee with just a spoon of sugar certainly cannot be considered sweet; however it
cannot be considered not-sweet either. It has a certain degree of sweetness and a certain
degree of not-sweetness.

• A man who is 175 cm tall certainly cannot be considered tall; on the other hand it cannot be
considered not-tall either. Again, he will have a degree of tallness and a degree of
not-tallness.

Summing up we can say that a fuzzy set does not divide the universe of discourse into
two parts: elements and not elements. Instead there is a third part which is characterized
by all those elements which cannot be classified exactly either way.

Set A

Complement of A

Fig. 6

Set A

Complement of A

Fig.7

FUZZYSTUDIO™4.1

D -12

Set Union
The union of two sets is the set whose elements belong to any of the two sets, as shown in
fig. 8.

Set A

Union of A and B

Set B

Fig.8

The above definition extends to the case of fuzzy sets by using the maximum rule as stated
in the previous paragraph while speaking of t_norm and t_conorm operator. In details, the
degree to which an element a belongs to the union of A and B is given by the maximum of the
degree of memberships in A and in B:

A � B(a) = max(A(a), B(a))

Appendix D - FUZZY LOGIC INTRODUCTION

D -13

Set Intersection

The intersection of two sets is the set whose elements belong to both sets, as shown in fig.
9.

Intersection of A and B

Set A Set B

Fig.9

The above definition extends to the case of fuzzy sets by using the minimum rule. In details,
the degree to which an element a belongs to the intersection of A and B is given by the mini-
mum of the degree of memberships in A and in B:

A � B(a) = min(A(a), B(a))

This way we have built a mathematical tool which allows us to deal with fuzzy sets in a formal
and as we will see useful way.

FUZZYSTUDIO™4.1

D -14

The mathematical formalism of Fuzzy Logic

Fuzzy Logic derives from Fuzzy Set Theory. Fuzzy Logic is concerned with statements of
type This coffee is sweet, My brother is tall, The temperature in the room is high. These
statements are characterized by the presence of concepts (such as height, temperature
etc.) called linguistic variables which are defined over a set called universe of discourse and
which are given linguistic values. What is a linguistic value ?

Let us consider the example statement: The temperature in the room is high. We have no in-
formation on the exact value of the temperature but we have instead a good information to
decide on the possibility that the temperature has a certain value. For instance we can say
that:

1 it is clearly impossible that the temperature is 10 degrees or less

2 it is very possible that the temperature is 30 degrees or higher.
A linguistic value (applied to a concept) so generates a set of possibilities on the exact value
of the linguistic concept. This set of possibilities (or possibility distribution) is the logical
counterpart of a fuzzy set: in our examples the fuzzy set of High Room Temperature. For
any given temperature t the higher is the degree of membership to the fuzzy set High Room
Temperature, the higher the possibility that t is the exact temperature in the room. This kind
of statements are indicated as fuzzy predicates. They are usually denoted by “x is A” where
x is an element of the universe of discourse and A is a fuzzy term. The possibility value that
“x is A” is also the degree to which the proposition “x is A” is true. The set of linguistic values
that can be given to a linguistic variables is called term set. Term sets are built starting from
pairs of antonyms and applying to them logical and linguistic modifications. For instance the
term set of the linguistic variable Temperature can be described as follows:

Linguistic Variable Temperature

Antonym pair Hot, Cold

Modifiers Not, Very, Quite, etc.

cold hot
quite cold quite hot

temperature

membership degree

Figure 10.

Appendix D - FUZZY LOGIC INTRODUCTION

D -15

0

1

Temperature

15 20

HighMedium

0

1

Temperature

15 20

HighMedium

Medium AND

0

1

Temperature

15 20

HighMedium

Medium OR

High

High

Fig.11

To each of this linguistic values corresponds a specific possibility distribution which is ob-
tained from the basic ones via logical aggregations.

The following picture illustrated a possible term set for the variable temperature.

The logical connectives: AND, OR, NOT used to aggregate fuzzy sets correspond to the set
operators. It is quite simple to understand how this connectives are defined if one has a
clear understanding of the set operations.

• NOT: the logical negation corresponds to the set complement operator. So, given a fuzzy
predicate x is A with degree of truth t, the degree of truth of NOT (x is A) will be 1 - t.

• AND: the logical conjunction corresponds to the set intersection operator. Therefore, given
two fuzzy predicates “x is A” and “x is B” the truth value of “x is A AND B” will be obtained by
taking the minimum of the two input truth values.

• OR: the logical disjunction corresponds to the set union operator. As a consequence, given
two fuzzy predicates “x is A” and “x is B” the truth value of “x is A OR B” will be obtained by
taking the maximum of the two input truth values.

Fig. 11 gives a pictorial representation of the two logical connectives in the case we have
the fuzzy predicates “x is High” and “x is Medium” where x ranges over the universe of dis-
course of Temperature.

As we mentioned above, fuzzy statements are evaluated by means of linguistic values.
Therefore, along with the above mathematical operators, we can apply to them linguistic
transformations (called hedges). For instance, given “x is Young” we can obtain “x is Very
Young” or “x is Quite Young” etc.

FUZZYSTUDIO™4.1

D -16

Fuzzy Reasoning

The main reason for the world-wide popularity gained by Fuzzy Logic is its capability to for-
malize patterns of human reasoning in a very simple, efficient and useful way. The continu-
ously growing number of applications in fields such as Control Theory, Expert Systems,
Robotics, Image recognition, Databases, etc. is an outstanding proof of it. The key idea co-
mes from a simple consideration on classical logic. The fundamental inference rule, that is a
rule that allows to obtain new true propositions from given ones, in classical logic is MODUS
PONENS:

Premise 1: IF x is A THEN y is B
Premise 2: IF x is A’

Conclusion: y is B’

Premise 1: IF x is A THEN y is B
Premise 2: IF x is A

Conclusion: y is B

The meaning of Modus Ponens is clear: if we have that x is A is true and if it is also true that
the fact that x is A implies that y is B then we can conclude that y is B is true. Thus, from the
true premises that “Humans are mortal” and “John is human” we can deduce that “John is
mortal”. Fuzzy Logic gives us a way to deduce useful conclusions either when the premises
are not absolutely true or when the antecedent of premise 1 is similar but not equal to prem-
ise 2 or when premise 2 is obtained as a modification from the antecedent of premise 1.

Premise 1 above is in the form of a production rule of the kind usually applied in the field of
expert systems. The production rule has the meaning: if the antecedent (x is A) is true then
apply the action (y is B). Production rules of this kind are applied in fuzzy system control.

Appendix D - FUZZY LOGIC INTRODUCTION

D -17

Fuzzy Computation

Fuzzy Models are used whenever they can competitively provide better information about
any physical process or any system. Fuzzy models are simple and strongly related to the
human knowledge. A fuzzy model is given as a collection of (fuzzy) production rules: Fuzzy
IF-THEN Rules. The collection of fuzzy IF-THEN rules and the related membership func-
tions represent the knowledge of the system.

In the example below we have defined the following fuzzy sets for the input xi variables and
the Y output variable:

X1: High, Medium and Low

X2: High, Medium and Low

Y : A, B, C

and we have the following set of fuzzy IF-THEN rules:

rule 1: If X1 is High and X2 is Low THEN Y is A
rule 2: If X1 is Medium and X2 is Medium THEN Y is B
rule 3: If X1 is Low and X2 is High THEN Y is C

As you can see above the correspondence between input values (condition) and output
value (action) is expressed in terms of relation on input and output fuzzy sets.

Medium Medium

Low

High Low

High

a a
1 2

�

�

�

�

�

�

���

�

���
���

���

���

= min (0.9, 0) = 0

= min (0.5, 0.6) = 0.5

= min (0.3, 0.9) = 0.3

Figure 12.

FUZZYSTUDIO™4.1

D -18

The rules are used as follows.

Step 1: fuzzyfication phase
The input are coded associating to each of them the corresponding crisp value.

Step 2: alpha-values computation phase
The coded input are compared with the antecedent fuzzy sets in order to evaluate their
membership degree to the linguistic values. In our example above, given values a1 and a2

for the antecedents, we obtain the membership values:

�1
1 = High(a1) �2

1 = Low(a2)

�1
2 = Medium(a1) �2

2 = Medium(a2)
�1

3 = Low (a1) �2
3 =High(a2)

which are aggregated using the minimum rule in order to compute the strength to which the
rules apply:

�i = min (�1
i ,�2

i) i = 1..3
The figure 12 gives a pictorial representation of the alpha-values computation.

Step 3: Inference phase
Using the alpha-values obtained from antecedent parts the membership functions of the
consequent are modified. The most classical of the inference methods are the max-min
method and the max-dot method.

Using the max-min method the membership functions of the consequent are cut at the al-
pha-value of the antecedent. So, defined U = {y1, ..yn} the universe of discourse of the out-
put variable Y, we obtain new fuzzy sets A’ B’ and C’ as follows:

A’(yi)=min(A(yi),�1), B’(yi)=min(B(yi),�2), C’(yi)=min(C(yi),�3).

Using the max-dot method the membership functions of the consequent are scaled using
the alpha-value of the antecedent. So, we obtain new fuzzy sets A’ B’ and C’ as follows

A’(yi)=min(A(y) � �1), B’(yi)=min(B(yi) � �2), C’(yi)=min(C(y � �3).

Fig. 13 gives a pictorial representation of the two most classical methods of inference.

MAX-MIN method MAX-DOT method

� �

Fig.13

Appendix D - FUZZY LOGIC INTRODUCTION

D -19

The membership functions of the consequent part, computed following one of the criteria
mentioned above, represents the inferred fuzzy set for each rule. The next step is the com-
bination of these fuzzy sets in order to deduce a single value for the output variables. It is re-
alized summing the modified output fuzzy set to obtain a new global fuzzy set G. The sum
can be performed in two different ways: either logical sum which corresponds to the logical
operator max, or arithmetic sum which corresponds to the point to point summation of the
membership function values. The difference between them is illustrated in the figure 14.

M.F.1 M.F. 2 MAX(M.F.1, M.F.2) M.F.1 + M.F.2

Figure 14.

The membership function G associated to the consequent is then used in the fourth step as
follows.

Step 4: Defuzzyfication phase.
The last step produces a crisp output from the fuzzy set G. In particular notice that this crisp
value is an element of the universe of discourse. This crisp output will be the value of the
control action. Many defuzzification methods have been proposed. They vary according to
the specific application and the designer knowledge and understanding of the system. We
will describe below the most commonly used in the hypothesis that G is defined over a finite

universe of discourse U={u1,u2,...,un}:

1 Center of Gravity: the output value y is given by the formula

y=S ui G(ui) / S G(ui)

Therefore we obtain the center of gravity of the area belonging to the real plane identified by
G.

2 Centroid Method: the output value y is given by the formula

y=S Ai bi / S Ai

where i varies over the inference rules. Ai is the area of the modified output fuzzy sets (i.e.
A’(Y), B’(Y), C’(Y) for the proposed example) and bi the centroid associated with the fuzzy
set.

In the following picture we will illustrate the difference between this two defuzzification
methods. The first one start from the global output fuzzy set G and deduces a crisp value as
the center of gravity of G. This approach implies a problem in case of a logic sum of the modi-
fied output fuzzy sets, since the common areas are taken once only, implying the exclusion
of the fuzzy sets covered by the others. The second one, based on the area of the single
modified output fuzzy sets, implicitly implies the arithmetic sum, thus the common areas are
taken twice.

FUZZYSTUDIO™4.1

D -20

FUZZIFICATION
FUZZY

DEFUZZIFICATION

y

Fuzzy Computational Model

input 1

input n

....

....

....

m= number of rules

INFERENCE

output rule 1

output rule 2

output rule m-1

output rule m

ALPHA-

CALCOLUS

�

�

�

�

1

2

m-1

m

Fig. 16

It is interesting to stress that, summing the modified output fuzzy sets using the arithmetic
sum in the inference phase and applying the two different defuzzification methods, the re-
sult will be the same.

3 Mean of Maxima: the output value is given by the formula

y=� mi / h

where m1,m2,...,mh are the h values where of maximum membership degree is G.

Center of Gravity methodCentroid method

first modified

output fuzzy set

second modified

output fuzzy set

fuzzy set G

centroid b
1

centroid b
2

defuzzified outputdefuzzified output

fuzzy set G

Fig.15

We conclude with a picture that summarizes the structure of a fuzzy computational model.

Appendix D - FUZZY LOGIC INTRODUCTION

D -21

Bibliography
[1] G. Klir, T. Folger: Fuzzy Sets, Uncertainty and Information. Englewood

Cliffs, NJ: Prentice-Hall, 1988.

[2] D. Dubois, H. Prade: Fuzzy Set and System: Theory and Applications. New
York: Academic Press, 1980.

[3] H. Zimmerman: Fuzzy Set Theory-and its Applications, 2nd ed. Boston:
Kluwer, 1990

[4] A. Kauffmann, M. Gupta: Introduction to Fuzzy Arithmetic: Theory and Appli-
cations. New York: Van Nostrand Reihold, 1985.

[5] T. Terano, K. Asai, M. Sugeno: Fuzzy Systems Theory and its Applications.
New York: Academic Press, 1987.

E -1

E - FULL

Fuzzy Logic Language

FULL (Fuzzy Logic Language) is a programming language oriented to the definition of
Fuzzy control systems. A FULL program is composed by two fundamental parts: the decla-
rations part to define the Fuzzy Variables Term Set, and the procedural part to define Fuzzy
control Rules.

< FULL PROGRAM > ::= <DECLARATIONS><RULES>.

In order to define the Term Set, the language allows the following actions:

• associates a label to an Universe of Discourse;

• defines templates for the Membership Functions;

• defines modifiers for the Membership Functions by using expressions;

• defines a Variable specifying the name, the associated Universe and the Membership Func-
tions composing the Term Set.

The set of the rules, having format IF ... THEN ..., defines the knowledge base to determi-
nate the values of output Variables starting from the input Variables values. The ante-
cedent part of the rules consists in a logic expression of fuzzy operators AND, OR and
NOT. The expression terms are the logic premise. Each premise is defined by an IS rela-
tion between a Variable and one of its Membership Function eventually modified. The
consequent part of the rules is a linguistic expression composed by consequence joint
by the connective AND. A consequence is defined by an IS relation between a Variable
and one of its Membership Functions.

FULL Language Elements

Token

Tokens are elements of source program that are not further reduced by Compiler in its com-
ponents. In FULL language, tokens are classified in the following categories:

• white space;

• punctuation;

• operators;

• keywords;

• identifiers;

• real values and constants.

FUZZYSTUDIO™ 4.1

E -2

White space

White space characters are introduced in the program text in order to improve the readabil-
ity. During the parsing of the program, the Compiler ignores the white spaces. The recog-
nized white spaces are:

• space

• tab (escape \t)

• carriage-return (escape \r)

• linefeed (escape \n)

• newline (escape \r\n)

• vertical tab (escape \v)

• formfeed (escape \f)

Comments

A comment is a sequence closed between double quote (“) containing whatever combina-
tion of characters except the double quote itself. A comment can be inserted anywhere in
the source program and the Compiler considers it as a white space.

Punctuation

The punctuation characters in FULL are used mainly to organize the program text. Actually
they don’t specify any operation with the language elements. The punctuation characters
are the following:

; . _ []
{ } ().

Some punctuation characters are operator symbols too.

Operators

Operators are symbols that specify the operation to execute with the program objects. In the
following, the FULL operators are listed, sorting them according to the priority.

£ (ALT+<0163> character) definition of independent variable;
[] indexing of Membership Functions;
() changing of priority in mathematical expressions;
+- unary sign operator;
%^ module and power operators;
*/ multplicative operators;
+- additive operators;
@ entry point;
, sequencer;
= definition operator.

All the operators are left associative.

E - FULL

E -3

Keywords

Keywords assume a particular meaning in FULL language and, for this reason, the Com-
piler manages them differently from the other words. The list of reserved FULL Keywords is
the following:

AND IF OR TIMES

AT IS POINTS UNIVERSES

BEGIN LAMBDA POLYLINE VARIABLES

CONTINUE LESS RENAME VERY

END MODIFIERS SHAPES WITH

FOR NOT THEN

Identifiers

Identifiers are names assigned to universes, modifiers, forms, variables and terms in a
FULLPROGRAM. It is not possible to use reserved keywords as identifiers. After being de-
clared, the identifier can be used in the program text as the object that it represents.

The FULL language puts some limitations on the words used as identifiers. An identifier
must start with a letter (upper or lower case) and it can be composed by letters, digits and
underscores (_). Upper and lower case letters are considered different.

In the following, the identifiers’ grammar is shown:

<IDENTIFIER> ::= <LETTER><DIGITLETTER> |

<LETTER>.

<DIGITLETTER> ::= <LETTER><DIGITLETTER> |

<DIGIT><DIGITLETTER> |

<LETTER>|

<DIGIT>.

<LETTER> ::= <LETTER> |

_.
With <LETTER> we intend one of the following:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z.

With <DIGIT> we intend one of following:

0 1 2 3 4 5 6 7 8 9.

FUZZYSTUDIO™ 4.1

E -4

Constants

A constant in FULL is a decimal number with a sign. The constant is composed by an integer
part, a decimal part and an exponent. The limits of the constant values depends on imple-
mentation. In any case, the FULL Compiler considers as equal constant values having the
same first 9 significative digits.

In the following, the constants grammar is shown:

<CONSTANT> ::= <INTEGERPART><SECONDPART> |
<INTEGERPART>.

<INTEGERPART> ::= <SIGN><DIGITSEQUENCE> |
<DIGITSEQUENCE>.

<SIGN> ::= + | -.

<DIGITSEQUENCE> ::= <DIGIT><DIGITSEQUENCE> |
<DIGIT>.

<SECONDPART> ::= . <DECIMALPART> |
<EXPONENT>.

<DECIMALPART> ::= <DIGITSEQUENCE><EXPONENT> |
<DIGITSEQUENCE>.

<EXPONENT> ::= e <INTEGERPART> |
E <INTEGERPART>.

Without explicit indication of sign, the positive sign is assumed by default.

Expressions

An expression is a sequence of operands and operators. An “operand” is the object man-
aged by the operator. Operands in FULL are identifiers, constants, mathematical functions
or expressions between parenthesis. Expressions are used in FULL to define modifiers and
terms (Membership Functions) with continuous functions. Both modifiers and terms are real
functions of a real variable. The FULL language asks the definition of an identifier for the
real variable of the function dominion (independent variable). The identifier for the inde-
pendent variable is declared with the operator £ or LAMBDA. The identifier is valid only in
the expression defining the function and it is no longer valid after the end of expression.

In the following, the function grammar is shown:

<FUNCDEF> ::= <INDEPENDENTVAR> . <EXPRESSION>.

<INDEPENDENTVAR> ::= £ <IDINDEPVAR>|
LAMBDA <IDINDEPVAR>.

<IDINDEPVAR> ::= <IDENTIFIER>.

The operators priority rules (see “Operators” paragraph) are used for the evaluations of
the expression together to the left associativity.

E - FULL

E - 5

<EXPRESSION> ::= <EXPRESSION><OPADD><ADDENDUM> |

<ADDENDUM>.

<ADDENDUM> ::= <ADDENDUM><OPMUL><OPERANDWITHSIGN> |
<OPERANDWITHSIGN>.

<OPERANDWITHSIGN>::= <CONSTANT> |

+ <OPERAND>|
- <OPERAND>|

<OPERAND>.

<OPERAND> ::= <IDINDEPVAR>|
<MATHFUNC>|
(<EXPRESSION>).

<MATHFUNC> ::= <FUNCTOR> (<EXPRESSION>).

With <OPADD> we intend one of following operations:

+ sum operation;
- subtraction operation.

With <OPMUL> we intend one of following operations:

* multiplication operation ;
/ division operation;
% module operation;
^ power operation.

<FUNCTOR> is one of the following symbols of mathematical function:

abs absolute value of a real number;
acos arcos of a real number in the interval [-1,1];
asin arcsin of a real number in the interval [-1,1];
atan arctan of a real number;
cos cosine of a real number;
cosh hyperbolic cosine of a real number;
exp exponential function;
log natural logarithm of a positive real number;
log10 decimal logarithm of a positive real number;
round real number rounding;
sin sine of a real number;
sinh hyperbolic sine of a real number;
sqrt square root of a not negative real number;
tan tangent of a real number;
tanh hyperbolic tangent of a real number;

The function symbols are not reserved words of the language.

FUZZYSTUDIO™ 4.1

E - 6

Declarations

A “declaration” specifies the interpretation to be given to an identifier. The objects in FULL
that can have a name are the universes of discourse, modifiers, forms, variables and mem-
bership functions. For this reason the declarations are divided in sessions called para-
graph. Each paragraph starts with a keyword that indicates the kind of objects to be defined
and ends with the start keyword of another paragraph or with the BEGIN keyword that indi-
cates the start of the rule list. Paragraphs can have any order. A paragraph can appear more
than once in the paragraph list. After the declaration, the introduced identifier is valid in the
whole source program but the use is restricted to the syntactical and semantical rules of
FULL language.

<DECLARATIONS> ::= <PARAGRAPH><DECLARATIONS> |
<PARAGRAPH>.

<PARAGRAPH> ::= <UNIVERSES> |
<MODIFIERS> |
<FORMS> |
<VARIABLES>.

Universes

The “Universes” paragraph starts with the keyword UNIVERSES. It is possible to define
whatever number of universes inside the paragraph. A universes declaration consists in the
definition of a label for a real number interval.

<UNIVERSES> ::= UNIVERSES <UNIVERSESLIST>.

<UNIVERSESLIST> ::= <UNIVERSE><UNIVERSESLIST> |
<UNIVERSE>.

<UNIVERSE> ::= <IDENTIFIER> = <INTERVAL> ;.

<INTERVAL> ::= [<CONSTANT> , <CONSTANT>].

The first constant in the interval definition must be lower than the second one. The uni-
verse identifiers can be used anywhere a universe of discourse specification is re-
quested.

E - FULL

E - 7

Modifiers

The “Modifiers “ paragraph is introduced by MODIFIER keyword. It is possible to define
whatever number of modifiers inside the paragraph. A modifier declaration defines an asso-
ciation between an identifier and a real function of a real variable. This variable, called inde-
pendent variable, assumes values in the interval [0,1]. The modifier function must assume
values in interval [0,1]. During compilation, values external to the interval [0,1] will be cut to
the interval extremes. The independent variable identifier is introduced with the notation £
or with the keyword LAMBDA (see “Expressions” paragraph).

<MODIFIERS> ::= MODIFIERS <MODLIST>.

<MODLIST> ::= <MODIFIER><MODLIST> |
<MODIFIER>.

<MODIFIER> ::= <IDENTIFIER> = <FUNCDEF> ;.

FULL supplies three already defined modifiers: NOT, VERY e LESS defined as:
NOT = £ x . 1-x;
VERY = £ x . x^2;
LESS = £ x . sqrt(x);

It is possible to define again each modifier inside the program. A modifier can be applied
to Variable terms specifying the modifier name. A modifier works in different ways if it is
used during a Variable definition (see “Variables” paragraph) or if it is applied in a rule
(see “Rules” paragraph).

FUZZYSTUDIO™ 4.1

E - 8

Shapes

The “Shapes” paragraph is introduced by the keyword SHAPES. It is possible to define in-
side the paragraph any number of shapes. A shape declaration defines a link between an
identifier and a normalized shape for a membership function. The shape is defined in a nor-
malized Universe of Discourse, that is in the interval [0,1]. Each normalized shape has an
“entry point” associated, that is a point in the interval [0,1] where the normalized shape is de-
fined that represents the shape itself. When the shape is fixed into the Universe of Dis-
course of the Variable and it becomes a membership function, the entry point is used to give
a position to the membership function so created (see “Variables” paragraph). As a default
the entry point value is 0.

<FORMS> ::= SHAPES <FORMSLIST>.

<FORMSLIST> ::= <FORM><FORMSLIST> |
<FORM>.

<FORM> ::= <IDENTIFIER> = <SHAPEDEF> ; |
<IDENTIFIER>=<SHAPEDEF><ENTRYPOINT>;.

<ENTRYPOINT> ::= @ <CONSTANT>.

FULL supplies three different ways to define shapes (membership function in the normal-
ized universe of discourse): by using points, multi-line, and continue.

<SHAPEDEF> ::= <POINTS> |
<MULTILINE> |
<CONTINUE>.

Using the definition by points (keyword POINTS), the Membership Function is defined
by a list of couples of values. The first value represents a value in the Universe of Dis-
course. The second value represents the belief value of the Membership Function in the
point of the Universe of Discourse specified with the first value of the couple. A “belief
value” is a value in the interval [0,1]. The couples’ list must be sorted considering first the
lower values of the universe of Discourse.

<POINTS> ::= POINTS { <COUPLESLIST> }.

<COUPLESLIST> ::= <COUPLE> , <COUPLESLIST> |
<COUPLE>.

<COUPLE> ::= <CONSTANT> / <BELIEF>.

<BELIEF> ::= <CONSTANT>.

Using the multi-line definition (keyword POLYLINE), the Membership Functions defined
by a list of couples of values that specifies the segments extremes of the polyline repre-
senting the Membership Function. Each couple, with the exception of the first and the
last one, defines the end of the previous segment and the start of the following one. The
couples’ list must be sorted considering first the lower values of the universe of Dis-
course.

<MULTILINE> ::= POLYLINE { <COUPLESLIST> }.

E - FULL

E - 9

In order to define continuous shapes (keyword CONTINUE), the Membership Function
must be defined using a list of stroke. A “stroke” is a couple composed by an interval of the
Universe of Discourse and a function of the independent variable. The identifier of the inde-
pendent is specified just after the keyword CONTINUE and it is valid just for the definition of
the Membership Function. The rules of this kind of definition are the following:

• the function is considered zero where it is not specified;

• negative function values are converted to zero;

• function values higher than 1 are converted to 1;

• if a is the first interval bound and b is the second one, then it must be b 3 a;

• if Ii and Ii+1 are two consecutive intervals, then it must be sup{Ii} £ inf{Ii+1 };

• if Ii and Ii+1 are two consecutive intervals and max{Ii} = min{Ii+1 } then it must be verified
that Fi (max{Ii}) = Fi (min{Ii+1 }). The Compiler does not compute the function and issues a
warning message.

<CONTINUE> ::= CONTINUE <IDINDEPVAR> { <STROKESLIST> }.

<STROKESLIST> ::= <STROKE> , <STROKESLIST> |
<STROKE>.

<STROKE> ::= <RANGE> . <EXPRESSION>.

<RANGE> ::= <OPEN>|
<OPENLEFT>|
<OPENRIGHT>|
<INTERVAL>.

<OPEN> ::= (<CONSTANT> , <CONSTANT>).

<OPENLEFT> ::= (<CONSTANT> , <CONSTANT>].

<OPENRIGHT> ::= [<CONSTANT> , <CONSTANT>).

FUZZYSTUDIO™ 4.1

E - 10

Variables

The variables paragraph is introduced by the keyword VARIABLES. Inside the paragraph, it
is possible to define whatever number of Variables. A variable declaration defines a link be-
tween a variable identifier and a term set. A “term set” is a set of membership functions de-
fined on a Universe of Discourse. If not specified, the Universe is the normalized one (that is
an universe in [0,1] interval).

<VARIABLES> ::= VARIABLES <VARIABLESLIST>.

<VARIABLESLIST> ::= <VARIABLE><VARIABLESLIST> |
<VARIABLE>.

<VARIABLE> ::= <IDENTIFIER> = <UDD> . <TERMSET>; |
<IDENTIFIER> = <TERMSET>;.

<UDD> ::= <IDENTIFIER> |
<INTERVAL>.

<TERMSET> ::= { <TERMSLIST> }.

<TERMSLIST> ::= <TERM> , <TERMSLIST> |
<TERM>.

An identifier and its definition must be supplied for each membership function belonging to
the term set. The membership functions identifiers are valid only inside the term set defini-
tion. In other words, a membership function belonging to a term set can be accessed only by
the variable identifier. A membership function in a term set can be defined directly inside the
term set. In this case, the same rules of shape definition (see “Shapes” paragraph) are valid.
Otherwise, it is possible to fix shapes or to modify already defined membership functions.

<TERM> ::= <IDENTIFIER> = <TERMDEF> ;.

<TERMDEF> ::= <SHAPEDEF> |
<FIXING> |
<MODIFIED> |
<REPEATFIXING>.

To fix a shape it is necessary to supply three parameters: the shape name, the position, in
the Universe of Discourse of the Variable, of the shape’s entry point and the shape’s width.
The shape’s width indicates a scale factor that allows to map the normalized universe to the
Universe of the Discourse of the Variable.

<FIXING> ::= <IDENTIFIER> (<ENTRYPOS>,<WIDTH>).

<ENTRYPOS> ::= <CONSTANT>.

<WIDTH> ::= <CONSTANT>.

E - FULL

E - 11

It is possible to define membership functions using modifier with fixed shapes or with al-
ready defined membership functions in the term set. The modifiers can be used in cascade.

<MODIFIED> ::= <MODIFIERSLIST><TOBEMODIFIED>|

<TOBEMODIFIED>.

<MODIFIERSLIST>::= <MODIFY><MODIFIERSLIST>|

<MODIFY>.

<TOBEMODIFIED> ::= <IDENTIFIER>|

<ELEMENT>|

<FIXING>.

<ELEMENT> ::= <IDENTIFIER> [<INTEGER>].

<INTEGER> ::= <DIGITSEQUENCE>.

<MODIFY> ::= <IDENTIFIER> |

NOT | VERY | LESS.

The repetition of shape fixing can be realized using FOR ... TIMES ... AT. In this way a mem-
bership function vector can be declared defining: the vector dimension, that is the number of
repetitions of shape fixing; the fixing of the first element of the vector; the distance between
the entry points of the following shapes. The compiler issues an error message if the entry
point positions so computed are out of the Universe of Discourse boundaries. Using the RE-
NAME construct it is possible to rename the membership functions of the vector. This con-
struct accepts a list of identifiers. The association between the membership functions of the
vector and the identifiers is done by the position of the identifier in the list. If a membership
function has not to be renamed, the character “_” (underscore) can be used. It is not neces-
sary that the identifier list has the same length of the vector: the exceeding identifiers are ig-
nored. The not renamed membership functions can be accessed indexing the vector name.
The vector option base is 1.

<REPEATFIXING> ::= FOR <NUMBTIMES> TIMES

<FIXINGMODIFIED>

AT <DISTANCE>

[RENAME <MBSIDLIST>].

<NUMBTIMES> ::= <INTEGER>.

<FIXINGMODIFIED> ::= <MODIFIERSLIST><FIXING> |

<FIXING>.

<DISTANCE> ::= <CONSTANT>.

<MBSIDLIST> ::= <IDMBS> , <MBSIDLIST> |

<IDMBS>.

<IDMBS> ::= <IDENTIFIER> |

_.

FUZZYSTUDIO™ 4.1

E - 12

Rules

The procedural part of FULL language starts with the keyword BEGIN and ends with the
keyword END. The keyword END closes also the source FULLPROGRAM. The procedural
part is composed by a set of rules. A “weight” can be associated to each rule using the WITH
construct. As a default, the weight associated is 1. To increase the importance of a rule, the
weight associated to the rule must be higher than 1; otherwise, to decrease the importance
of the rule, the weight must be lower than 1.

<RULES> ::= BEGIN <RULESLIST> END.

<RULESLIST> ::= <RULE><RULESLIST>|
<RULE>.

<RULE> ::= <RULEFORM> [WITH <WEIGHT>] ; |
<RULEFORM>.

<WEIGHT> ::= <CONSTANT>.

A rule is an inference of the kind IF ... THEN ... composed by an antecedent part and a con-
sequent part.

<RULEFORM> ::= IF <ANTECEDENT> THEN <CONSEQUENT>.

The antecedent part is a logic expression that uses the fuzzy logic operators AND & OR. In
fuzzy logic expressions, AND operator has higher priority than OR operator. The use of pa-
renthesis can alter the order in which the operators are evaluated.

<ANTECEDENT> ::= <ANTECEDENT> OR <ALTERNATIVE> |
<ALTERNATIVE>.

<ALTERNATIVE> ::= <ALTERNATIVE> AND <CONTRIBUTE> |
<CONTRIBUTE>.

<CONTRIBUTE> ::= (<ANTECEDENT>)|
<PREMISE>.

The consequent part contains a list of consequences of the inference, grouped with the
AND connector. The AND connector has only a syntactical role and a totally different mean-
ing of the AND fuzzy logic operator.

<CONSEQUENT> ::= <CONSEQUENCE> AND <CONSEQUENCE> |
<CONSEQUENCE>.

E - FULL

E - 13

“Premises” and “Consequences” are unary predicates of the kind M(x) where M is a Mem-
bership Function defined in the Universe of Discourse of the variable x. In order to define
this kind of predicates, FULL supplies the syntactical connective IS. So the unary predicate
can be syntactically described as “x IS M”.

As a consequence, M can be substituted by a membership function name, by an element of
a membership function’s vector, or by a crisp value in the universe of Discourse of Variables
x.

<CONSEQUENCE> ::= <IDENTIFIER> IS <OUTPUT>.

<OUTPUT> ::= <IDENTIFIER>|
<ELEMENT> |
<CONSTANT>.

In a premise, M can be substituted by a membership function name, by an element of a
membership functions vector, or a modified membership function of the Variable x.

<PREMISE> ::= <IDENTIFIER> IS <MODIFIEDMBS>.

<MODIFIEDMBS> ::= <MODIFY><MODIFIEDMBS>|
<IDENTIFIER>|
<ELEMENT>.

In FULL a “consequence” can be considered as a “premise” of another rule. In such a case,
the rule interpretation assigns to the “premise” p an a value equal to the max J value of the
rules having p as “consequence”.

FUZZYSTUDIO™ 4.1

E - 14

FULL Program Example

In this paragraph, all the functionalities given by FULL language are described by means of
an example program. This program has not a particular semantic, except the necessary one
to explain the language.

The first three shapes are defined: the building of variables term sets is based on them. The
first shape is a triangle having the vertex with max belief in the center of normalized uni-
verse; the vertex is also the entry point of the shape. The second shape is a crisp value in the
middle of the normalized universe. The third is a parabola equation having vertex with max
belief in the middle of the normalized universe a minimum belief in the universe extremes.

SHAPES
triangle = POLYLINE {0/0, 0.5/1, 1/0} @ 0.5;
crisp = POINTS {0.5/1} @ 0.5;
parabola = CONTINUE x { [0,1]. -4*(x^2) + 4*x };

In addition, a modifier that transforms the triangular membership functions in gaussian
membership functions is defined. The equation for the modifier is obtained making repeated
modifications to the triangle corresponding to “NOT VERY NOT VERY triangle”.

MODIFIERS
gauss = LAMBDA y . 1-(1-y^2)(1-y^2);

The control to be defined uses three variables: temperature, pressure and out. After defin-
ing the universes, the term set declaration must be done.

The variable “temperature”, defined in the universe “degrees”, has a term set composed by
5 membership functions. The membership functions “verylow” and “veryhigh” are defined
directly inside the term set definition as polyline. They are triangles in the extremes of the
universe of discourse. The other membership functions are defined using a multiple fixing of
the shape triangle. the first element of the vector “middle” has the vertex, that is the entry
point of the “triangle” shape, in the position 25 of the universe “degrees” and the base of tri-
angle width equal to 50. The second and the third element of the vector have vertex respec-
tively in 50 and 75.

The variable “pressure”, defined in the universe “atmosphere”, has a term set having three
membership functions. The membership function ”low” and “high” are gaussians obtained
with the modifier “gauss” of the shape “triangle”. Notice that the vertex of “low” and “high”
are on the extreme of the universe. The membership functions “medium” is a fixing of the
shape “parabola” with the vertex in the position 10 in the universe of discourse “atmo-
sphere”. The variable “out” has a term set composed by a vector of 10 fixing of the shape
“crisp”.

E - FULL

E - 15

UNIVERSES

degrees= [0,100];

atmosphere = [1, 20];

VARIABLES

temperature = degrees .

{

verylow = POLYLINE { 0/1, 25/0 };

veryhigh = POLYLINE { 75/0, 100/1 };

middle = FOR 3 TIMES triangle(25,50)

AT 25 RENAME low, medium, high;

}

pressure = atmosphere .

{

low = gauss triangle(0,20);

medium = parabola(0,20);

high = gauss triangle(20,20);

}

out = [1,10] .

{

out = FOR 10 TIMES crisp(1,2) AT 1 RENAME off;

}

BEGIN
IF temperature IS verylow THEN out IS off WITH 2;
IF temperature IS VERY low AND (pressure IS low OR pressure IS medium)

THEN out IS out[1] AND out IS out[2];
IF temperature IS NOT verylow AND out IS off THEN out IS 3.5;
END

In the following 3 rules, defined on the declared variables, are showed.

FUZZYSTUDIO™ 4.1

E - 16

FULL Language Grammar

In the following the whole FULL grammar is showed.

<FULLPROGRAM> ::= <DECLARATIONS><RULES>.

<DECLARATIONS> ::= <PARAGRAPH><DECLARATIONS> |
<PARAGRAPH>.

<PARAGRAPH> ::= <UNIVERSES> |
<MODIFIERS>|
<FORMS>|
<VARIABLES>.

<UNIVERSES> ::= UNIVERSES <UNIVERSESLIST>.

<UNIVERSESLIST> ::= <UNIVERSE><UNIVERSESLIST> |
<UNIVERSE>.

<UNIVERSE> ::= <IDENTIFIER> = <INTERVAL> ;.

<INTERVAL> ::= [<CONSTANT> , <CONSTANT>].

<MODIFIERS> ::= MODIFIERS <MODLIST>.

<MODLIST> ::= <MODIFIER><MODLIST> |
<MODIFIER>.

<MODIFIER> ::= <IDENTIFIER> = <FUNCDEF> ;.

<FORMS> ::= SHAPES <FORMSLIST>.

<FORMSLIST> ::= <FORM><FORMSLIST> |
<FORM>.

<FORM> ::= <IDENTIFIER> = <SHAPEDEF> ; |
<IDENTIFIER> = <SHAPEDEF><ENTRYPOINT>;.

<ENTRYPOINT> ::= @ <CONSTANT>.

<SHAPEDEF> ::= <POINTS>|
<MULTILINE>|
<CONTINUE>.

<POINTS> ::= POINTS { <COUPLESLIST> }.

<COUPLESLIST> ::= <COUPLE> , <COUPLESLIST> |
<COUPLE>.

<COUPLE> ::= <CONSTANT> / <BELIEF>.

<BELIEF> ::= <CONSTANT>.

<MULTILINE> ::= POLYLINE { <COUPLESLIST> }.

<CONTINUE> ::= CONTINUE <IDINDEPVAR> {<STROKESLIST>}.

<STROKESLIST> ::= <STROKE> , <STROKESLIST> |
<STROKE>.

<STROKE> ::= <RANGE> . <EXPRESSION>.

E - FULL

E -17

<RANGE> ::= <OPEN>|
<OPENLEFT>|
<OPENRIGHT>|
<INTERVAL>.

<OPEN> ::= (<CONSTANT> , <CONSTANT>).

<OPENLEFT> ::= (<CONSTANT> , <CONSTANT>].

<OPENRIGHT> ::= [<CONSTANT> , <CONSTANT>).

<VARIABLES> ::= VARIABLES <VARIABLESLIST>.

<VARIABLESLIST> ::= <VARIABLE><VARIABLESLIST> |
<VARIABLE>.

<VARIABLE> ::= <IDENTIFIER> = <UDD> . <TERMSET>;|
<IDENTIFIER> = <TERMSET>;.

<UDD> ::= <IDENTIFIER>|
<UNIVERSE>.

<TERMSET> ::= { <TERMSLIST> }.

<TERMSLIST> ::= <TERM> , <TERMSLIST> |
<TERM>.

<TERM> ::= <IDENTIFIER> = <TERMDEF> ;.

<TERMDEF> ::= <SHAPEDEF> |
<FIXING>
<MODIFIED>|
<REPEATFIXING>.

<FIXING> ::= <IDENTIFIER>(<ENTRYPOS>,<WIDTH>).

<ENTRYPOS> ::= <CONSTANT>.

<WIDTH> ::= <CONSTANT>.

<MODIFIED> ::= <MODIFIERSLIST><TOBEMODIFIED>.

<MODIFIERSLIST> ::= <MODIFY><MODIFIERSLIST>|
<MODIFY>.

<TOBEMODIFIED> ::= <IDENTIFIER>|
<FIXING>.

<MODIFY> ::= <IDENTIFIER>|
<ELEMENT>|
NOT | VERY | LESS.

<ELEMENT> ::= <IDENTIFIER> [<INTEGER>].

<INTEGER> ::= <DIGITSEQUENCE>.

<REPEATFIXING> ::= FOR <NUMBTIMES> TIMES
<FIXINGMODIFIED>
AT <DISTANCE>
[RENAME <MBSIDLIST>].

<NUMBTIMES> ::= <INTEGER>.

FUZZYSTUDIO™ 4.1

E - 18

<FIXINGMODIFIED> ::= <MODIFIERSLIST><FIXING>|
<FIXING>.

<DISTANCE> ::= <CONSTANT>.

<MBSIDLIST> ::= <IDMBS> , <MBSIDLIST>|
<IDMBS>.

<IDMBS> ::= <IDENTIFIER>|
_.

<RULES> ::= BEGIN <RULESLIST> END.

<RULESLIST> ::= <RULE><RULESLIST>|
<RULE>.

<RULE> ::= <RULEFORM> [WITH <WEIGHT>] ;|
<RULEFORM>.

<WEIGHT> ::= <CONSTANT>.

<RULEFORM> ::= IF <ANTECEDENT> THEN <CONSEQUENT>.

<CONSEQUENT> ::= <CONSEQUENCE> AND <CONSEQUENCE> |
<CONSEQUENCE>.

<CONSEQUENCE> ::= <IDENTIFIER> IS <OUTPUT>.

<OUTPUT> ::= <IDENTIFIER>|
<ELEMENT>|
<CONSTANT>.

<ANTECEDENT> ::= <ANTECEDENT> OR <ALTERNATIVE> |
<ALTERNATIVE>.

<ALTERNATIVE> ::= <ALTERNATIVE> AND <CONTRIBUTE> |
<CONTRIBUTE>.

<CONTRIBUTE> ::= (<ANTECEDENT>)|
<PREMISE>.

<PREMISE> ::= <IDENTIFIER> IS <MODIFIEDMBS>.

<MODIFIEDMBS> ::= <MODIFY><MODIFIEDMBS>|
<IDENTIFIER>|
<ELEMENT>.

<FUNCDEF> ::= <INDEPENDENTVAR> . <EXPRESSION>.

<INDEPENDENTVAR> ::= £ <IDINDEPVAR>|
LAMBDA <IDINDEPVAR>.

<IDINDEPVAR> ::= <IDENTIFIER>.

<EXPRESSION> ::= <EXPRESSION><OPADD><ADDENDUM>|
<ADDENDUM>.

<ADDENDUM> ::= <ADDENDUM><OPMUL><OPERANDWITHSIGN>|
<OPERANDWITHSIGN>.

E - FULL

E - 19

<OPERANDWITHSIGN>::= <CONSTANT>|

+ <OPERAND>|

- <OPERAND>|

<OPERAND>.

<OPERAND> ::= <IDINDEPVAR>|

<MATHFUNC>|

(<EXPRESSION>).

<MATHFUNC> ::= <FUNCTOR> (<EXPRESSION>).

<IDENTIFIER> ::= <LETTER><DIGITLETTER>|

<LETTER>.

<DIGITLETTER> ::= <LETTERS><DIGITLETTER>|

<DIGIT><DIGITLETTER>|

<LETTERS>|

<DIGIT>.

<LETTERS> ::= <LETTER>|

_.

<CONSTANT> ::= <INTEGERPART><SECONDPART>|

<INTEGERPART>.

<INTEGERPART> ::= <SIGN><DIGITSEQUENCE>|

<DIGITSEQUENCE>.

<SIGN> ::= + | -.

<DIGITSEQUENCE> ::= <DIGIT><DIGITSEQUENCE>|

<DIGIT>.

<SECONDPART> ::= . <DECIMALPART>|

<EXPONENT>.

<DECIMALPART> ::= <DIGITSEQUENCE><EXPONENT>|

<DIGITSEQUENCE>.

<EXPONENT> ::= e <INTEGERPART>|

E <INTEGERPART>.

FUZZYSTUDIO™ 4.1

E - 20

“ FULL source from ‘SAMPLE’ project by Fuzzy Studio 4 ”

VARIABLES

distance = [0,100] .{

medium = POLYLINE {24.7058824/0, 49.8039216/1, 75.2941176/0};

low = POLYLINE {0/1, 24.7058824/1, 49.8039216/0};

high = POLYLINE {49.8039216/0, 75.2941176/1, 100/1};

};

speed = [0,250] .{

medium = POLYLINE {61.7647059/0, 124.509804/1, 188.235294/0};

low = POLYLINE {0/1, 0.980392157/1, 123.529412/0};

high = POLYLINE {124.509804/0, 249.019608/1, 250/1};

};

brakes_power = [0,8] .{

one = POINTS {1.03529412/1};

two = POINTS {2.00784314/1};

five = POINTS {5.05098039/1};

four = POINTS {4.01568627/1};

three = POINTS {3.01176471/1};

six = POINTS {6.02352941/1};

seven = POINTS {7.09019608/1};

eight = POINTS {8/1};

zero = POINTS {0/1};

};

BEGIN “9 rules defined”

IF distance IS low AND speed IS high THEN brakes_power IS eight ;

IF distance IS low AND speed IS medium THEN brakes_power IS four ;

IF distance IS low AND speed IS low THEN brakes_power IS two ;

IF distance IS medium AND speed IS low THEN brakes_power IS 1 ;

IF distance IS medium AND speed IS medium THEN brakes_power IS 4 ;

IF distance IS medium AND speed IS high THEN brakes_power IS six ;

IF distance IS high AND speed IS low THEN brakes_power IS zero ;

IF distance IS high AND speed IS medium THEN brakes_power IS two ;

IF distance IS high AND speed IS high THEN brakes_power IS four;

END

21

FUZZYSTUDIO™ 4.1

22

EUROPE

DENMARK
DK-2730 HERLEV
Gl. Klausdalsbrovej 491
Tel. (45-44) 94.85.33 Telefax: (45-44) 94.86.94

FINLAND
LOHJA SF-08150
Ratakatu, 26 Tel. (358-19) 32821
Telefax. (358-19) 3155.66

FRANCE
94253 GENTILLY Cedex
7 - Avenue Gallieni - BP. 93

Tel.: (33-1) 47.40.75.75
Telefax: (33-1) 47.40.79.10

67000 STRASBOURG
20, Place des Halles
Tel. (33-3) 88.75.50.66
Telefax: (33-3) 88.22.29.32

GERMANY
D-85630 GRASBRUNN
Bretonischer Ring 4
Postfach 1122
Tel.: (49-89) 460060
Telefax: (49-89) 4605454

D-90449 NÜRNBERG
Sudwestpark, 92
Tel.: (49-911) 670408-0
Telefax: (49-911) 670408-99

D-70499 STUTTGART
31 Mittlerer Pfad 2-4
Tel. (49-711) 13968-0
Telefax: (49-711) 8661427

HUNGARY (Representative Office)
1139 Budapest Vaci UT 99
Tel.(36-1)350 5280

ITALY
20090 ASSAGO (MI)
South europe Commercial Headquarters
V.le Milanofiori - Palazzo E/5
Tel. (39) 0257546.1
Telefax: (39) 028250449

40033 CASALECCHIO DI RENO (BO)
Via R. Fucini, 12
Tel. (39) 051591914
Telefax: (39) 051591305

00161 ROMA
Via A. Torlonia, 15
Tel. (39) 064425941
Telefax: (39) 0685354438

THE NETHERLANDS
5652 AR EINDHOVEN
Meerenakkerweg 1
Tel.: (31-40) 2509600
Telefax: (31-40) 2528835

POLAND
WARSAW 00517
Ul. Marslzalkowska 82
Tel.: (0048-22) 622 0561
Telefax: (0048-22) 623 6437

SPAIN
E-08004 BARCELONA
Calle Gran Via Cortes Catalanes, 322
6th Floor, 2th Door
Tel. (34) 93 4251800
Telefax: (34) 93 4253674

E-28027 MADRID
Calle Albacete, 5
Tel. (34) 91 4051615
Telefax: (34) 91 4031134

SWEDEN
S-16421 KISTA
Borgarfjordsgatan, 13 - Box 1094
Tel.: (46-8) 58774400
Telefax: (46-8) 58774411

SWITZERLAND
1215 GENEVA 15
Route de PréBois, 20
Tel. (41-22) 9292929
Telefax: (41-22) 9292900

TURKEY
34630 FLORYA INSTAMBUL
Besyol Mah.
Florya Kavsagi Eski Londra Asfalti No.26B/10
Tel.(90) 212 624 32 64
Telefax: (90) 212 624 96 26

35030 BORNOVA IZMIR
295 SK. No:1 K:8 D:6
Tel: (90) 232 486 03 51
Fax: (90) 232 486 05 28

UNITED KINGDOM and EIRE
MARLOW, BUCKS, SL71Y
Planar House, Parkway
Globe Park
Tel.: (44-1628) 890800
Telefax: (44-1628) 890391

Internet Address http://www.st.com

23

AMERICAS

BRAZIL
05413 SAO PAULO
R. Henrique Schaumann 286-CJ03
Tel.: (55-11) 883-5455
Telefax : (55-11) 282-2367

69050-010 MANAUS
Av. Djalma Batista, 2469 - sala 5B
Tel: +55 92 633-7303 (3 trunks)
Telefax: +55 92 633-7042

CANADA
CALGARY, Alberta T1Y 5R8
2723 37th Ave., N.E., Suite 206
Tel.: (403) 291-4001
Telefax: (403) 291-3948

NEPEAN ONTARIO K2H 9C4
301 Moodie Dr., Suite 307
Tel.: (613) 829-9944
Telefax: (613) 829-8996

MISSISAUGA, Ontario L4V 1R9
5945 Airport Rd., Suite 362
Tel.: (905) 678-9800
Telefax: (905) 678-1799

MEXICO
01070 MEXICO DF
Insurgentes Sur# 2376-604
Col. Chimalistac, San Angel
Tel.: (525) 616 4801
Telefax: (525) 616 4872

44550 Guadalajara
2347 Av. Mariano Otero
Piso 5, of. “B” Col. Verde Valle
Tel.: (52) 3-647 6081
Telefax: (52) 3-647 5231

U.S.A.
NORTH & SOUTH AMERICAN
MARKETING HEADQUARTERS
Lexington Corporate Center
10 Maguire Road
Building 1, 3rd Floor
Lexington, MA 02421
Tel.: (781) 861-2650
Telefax: (781) 861-2678

ALABAMA
Huntsville - Tel.: (256) 895-9544

Fax: (256) 895-9114

ARIZONA
Phoenix - Tel.: (602) 485-6100

Fax: (602) 485-6330

CALIFORNIA
Agoura Hills - Tel.: (818) 865-6850

Fax: (818) 865-6861

Laguna Niguel - Tel.: (949) 347-0717
Fax: (949) 347-1224

San Jose - Tel.: (408) 452-8585
Fax: (408) 452-1549

COLORADO
LONGMONT
1625 S. Fordham Street, Suite 500
LONGMONT, CO 80503 - USA
Tel: +1 303 774-2530/2515/2537
Fax: +1 303 772 0720]

CONNECTICUT
Woodstock - Tel.: (860) 928-7700

Fax: (860) 928-2722

FLORIDA
Boca Raton - Tel.: (561) 997-7233

Fax: (561) 997-7554

GEORGIA
Norcross - Tel.: (770) 449-4610

Fax: (770) 449-4609
IDAHO
Boise - Tel.: (208) 376-9151

Fax: (208) 376-9109

ILLINOIS
Schaumburg - Tel.: (847) 517-1890

Fax: (847) 517-1899

INDIANA
Indianapolis - Tel.: (317) 575-5520

Fax: (317) 575-8271

Kokomo - Tel.: (765) 455-3500
Fax: (765) 455-3400

MICHIGAN
Livonia - Tel.: (734) 953-1700

Fax: (734) 462-4071

MINNESOTA
Edina - Tel.: (612) 835-3500

Fax: (612) 835-3555

MISSOURI
Kansas City - Tel.: (816) 468-6868

Fax: (816) 468-6561

NEW JERSEY
Basking Ridge - Tel.: (908) 766-7401

Fax: (908) 766-7738

Voorhees - Tel.: (609) 772-6222
Fax: (609) 772-6037

NEW YORK
Fishkill - Tel.: (914) 896-2926

Fax: (914) 897-3734

NORTH CAROLINA
Cary - Tel.: (919) 469-1311

Fax: (919) 469-4515
OREGON
Corvalis - Tel.: (541) 754 8192

Fax: (541) 754 8262

Internet Address http://www.st.com

FUZZYSTUDIO™ 4.1

24

Lake Oswego - Tel.: (503) 635-7635
Fax: (503) 635-7677

PENSYLVANIA
Bensalem - Tel.: (215) 638 2958

Fax: (215) 638 2986
TEXAS
Carrollton - Tel.: (972) 466-8445

Fax: (972) 466-8387

Houston - Tel.: (281) 376-9939
Fax: (281) 376-9948

UTAH
Midvale - Tel.: (801) 256 3571

Fax: (801) 256 3578

ASIA / PACIFIC
AUSTRALIA
SYDNEY
Suite 3, Level 7, Otis House
43 Bridge Street
N.S.W. 2220 Hurtsville
Tel. (61-2) 9580 3811
Telefax: (61-2) 9580 6440

MELBOURNE
Suite 305 Level 3
3 Chester Street
Oakleigh Vic 3166
Tel. (61-3) 9568 1222
Telefax: (61-3) 9568 1999

CHINA (Liaison Offices)
BEIJING 100027 P.R.C.
Room 809, NCHK Manhattan Building,
6 Chanyangmen Beidajie,
Tel.: (86-10) 6554 4701
Telefax: (86-10) 6554 4705

SHANGHAI
Unit 1801, 18/F
Shui On Plaza
333 Huai Hai Zhong Road
Tel. (86-21) 5306 0898
Telefax: (86-21) 5306 0890

SHENZHEN 518048
52, Tao Hua Road
Futian Free Trade Zone Tel. (86-755) 359 0950
Telefax: (86-755) 359 1155

HONG KONG
Special Administrative Region
16/F., Tower 1, The Gateway 1,
25 Canton Road,
Tsim Sha Tsui, Kowloon
Tel. (852) 2861 5700
Telefax: (852) 2861 5044

INDIA(Liaison Offices)
BANGALORE 560052
Diners Business Service
26 Cunningham Road
Tel. (91-80) 267 272
Telefax: (91-80) 261 133

NOIDA 201301
Liaison Office
Plot N. 2 & 3, Sector 16A
Institutional Area
Distt Ghaziabad UP
Tel. (91-11) 9153 0965/8
Telefax: (91-11) 9154 1957

MALAYSIA
SELANGOR, PETALING JAYA 46050
Darul Ehsan
1205, Block A, Menara PJ
No 18, Jalan Persian Barat,
Tel.: (60-3) 758 1189
Telefax: (60-3) 758 1179

PENANG 11900
Unit 9-A, Lower Level 5
Hotel Equatorial
1 Jalan Bukit Jambul
Tel. (60-4) 642 8291
Telefax: (60-4) 642 8284

KOREA
SEOUL
19th Fl Kang Nam Building
1321-1 Seocho-dong, Seocho-Ku
Tel. (82-2) 3489-0114
Telefax: (82-2) 588-9030

TAEGU 701-023
18th Floor Youngnam Tower
111 Shinchun-3 Dong, Dong-Ku
Tel. (82-53) 756-9583
Telefax: (82-53) 756-4463

SINGAPORE
SINGAPORE 569508
28 Ang Mo Kio - Industrial Park 2
Tel. (65) 482 1411
Telefax: (65) 482 0240

TAIWAN
TAIPEI 106
20F, No. 207
Tun Hua South Road, Section 2
Tel. (886-2) 23788088
Telefax: (886-2) 23789188

THAILAND
BANGKOK 10110
Unit # 1315 54 Asoke Road
Sukhumvit 21
Tel.: (66-2) 260 7870
Telefax: (66-2) 260 7871

JAPAN
TOKYO
108 5 F Nisseki -
Takanawa Blg. 2-18-10 Takanawa Minato-Ku
Tel. (81-3) 3280-4120
Telefax: (81-3) 3280-4131

OSAKA 532
14 F Shin-Osaka Second Mori building
3-5-36 Miyahara Yodogawa-Ku
Tel. (81-0) 6397-4130
Telefax: (81-0) 6397-4131

Internet Address http://www.st.com

25

ORDERING INFORMATION

INTERNAL CODE

ST52X420/KIT

	Elast.pdf
	Ta ble of Con tents
	ABOUT THIS MAN UAL 1
	Man ual Con tents 1

	BE FORE YOU BE GIN 3
	Gen eral Con ven tions 3
	Mouse con ven tions 3
	Key board con ven tions 3

	1 - WEL COME TO FUZZYSTUDIOŽ4.1 5
	Key Fea tures 5

	IN STAL LA TION AND CON FIG U RA TION 7
	Sys tem Re quire ments 7
	In stalling FUZZYSTUDIOŽ4 7
	Starting to Use 7
	User In ter face 7
	Choosing Com mands 8
	Click ing a toolbar but ton 8
	Choosing com mands from menus 8

	Using Help 9
	Con text-Sensitive Help 9

	Avail able Doc u ments 9

	2 - FUZZYSTUDIOŽ 4.1 OVER VIEW 11
	Pro gramming Ap proach 13

	3 - PRO JECT MAN AGE MENT 15
	The FUZZYSTUDIOŽ4.1 Main Win dow 15
	The FUZZYSTUDIOŽ4.1 Main Win dow ap pli ca tion menus 15
	The FUZZYSTUDIOŽ4.1 Main Win dow toolbar 16
	The FUZZYSTUDIOŽ4.1 Main Win dow sta tus bar 16

	Pro ject Files Man age ment 17
	Starting a New Pro ject 17
	Working with an ex ist ing Pro ject 17

	Pro ject Win dow 18
	Main Pro gram 19
	In ter rupts 19
	Pe riph erals 19
	Pro ce dures 20
	Vari ables 20
	Ta bles 20

	4 - INI TIAL SET TINGS 21
	Vari ables Win dow 21
	Fil ter di a log-box 23

	Ta bles Win dow 24
	Pe riph erals Con fig u ra tion 27

	5 - BLOCKS ED I TOR 29
	Blocks Ed i tor Win dow 29
	Blocks Ed i tor menus 30
	Blocks Ed i tor win dow toolbar 30
	Blocks Ed i tor win dow sta tus bar 30

	 FUZZYSTUDIOŽ4.1 Blocks 31
	Block Di a gram Starting Point 32
	La bels 32
	Working with Blocks 33
	In serting blocks 33
	Linking blocks 33
	Dis con nect blocks and links 34
	Sin gle and mul ti ple se lec tion of blocks 34
	De leting blocks and links 34
	Open ing and clos ing blocks 35
	Copying blocks 35
	Other com mands 36

	6 - FUZZY BLOCK 37
	Fuzzy Sys tem Ed i tor 38
	Fuzzy Sys tem Ed i tor menus 38
	Fuzzy Sys tem Ed i tor win dow toolbar 38
	Fuzzy Sys tem Ed i tor win dow sta tus bar 38

	Fuzzy Sys tem Ed i tor 39
	Fuzzy Vari ables Ini tial iza tion and Stor age 39
	Shared Vari ables 40
	Vari ables and Mem ber ship Func tions Ed i tor 41
	Vari ables Ed i tor menus 41
	Vari ables Ed i tor win dow toolbar 42
	Vari ables Ed i tor win dow sta tus bar 42

	Fuzzy Vari ables Prop erties 43
	Cre ating a New Mem ber ship Func tion 44
	Auto Fill tool 45
	Autoshift and Semibase pa ram e ter 46
	Mod ifying the Mem ber ship Func tions shapes 47
	MBF Re port tool 48
	Mem ber ship Func tions Ed i tor Op tions 49

	Rules Ed i tor 51
	Rules Ed i tor menus 52
	Rules Ed i tor win dow toolbar 52
	Rules Ed i tor win dow sta tus bar 52

	Guided Rules Ed i tor 53
	Man ual Rules Ed i tor 54
	Rules List up dat ing 55
	Rules Ed i tor Con straints 55

	Rules Gram mar 56
	Rules Ed i tor Er ror Mes sages 57
	Im porting Fuzzy Sys tems 58

	7 - ARITH ME TIC BLOCK 59
	Arith me tic Block Ed i tor Win dow 59
	Arith me tic Block Ed i tor menus 60
	Arith me tic Block Ed i tor win dow sta tus bar 60

	Arith me tic Block Ed i tor 60
	Arith me tic Block In struc tions 61
	Global Vari ables Types and Cast 62
	Math e mat i cal in struc tions 63
	Logic in struc tions 64
	Con trol Struc tures 64
	Log i cal func tions for con di tional ex pres sions 66
	Func tions for Pe riph erals and In ter rupts Man age ment 66
	Func tions for bit ma nip u la tion 67

	Ta bles and Con stants 68

	8 - AS SEM BLER BLOCK 69
	As sem bler Block Ed i tor Win dow 69
	As sem bler Block Ed i tor menus 70
	As sem bler Block Ed i tor win dow sta tus bar 70
	As sem bler Block Ed i tor 70

	As sem bler Block In struc tions 71

	9 - CON DI TIONAL BLOCK 75
	Con di tional Block Ed i tor 75
	Con di tional Block Gram mar 76

	10 - BLOCKS FOR PE RIPH ERALS MAN AGE MENT 77
	Send and Re ceive Block 77
	Send Block 77

	Re ceive Block 78
	Pe riph erals Blocks 79

	11 - IN TER RUPTS RE LATED BLOCKS 81
	In ter rupts En able Block 81
	In ter rupts Dis able Block 82
	In ter rupts Re set Block 82
	In ter rupts Mask Block 83
	In ter rupts Pri or ity Block 84

	12 - OTHER BLOCKS 85
	Call Block 85
	Wait and Halt Blocks 86
	Re start and Re turn Blocks 87
	IRQ and RETI Blocks 87
	Folder Block and Exit Block 88
	Folders with Com piler op tions 89

	13 - COM PILER 91
	Pro ject Com pi la tion 91
	Files gen er ated dur ing com pi la tion 92
	Com piler Op tions 93

	Com piler Er ror Mes sages 93
	Com pi la tion er rors 93

	Com pi la tion Warn ings 100

	14 - DE BUGGER 103
	Debugger Win dow 104
	Debugger menus 104
	Debugger win dow toolbar 105
	Blocks Ed i tor win dow Sta tus Bar 105

	Open ing and Closing the Debugger 105
	Debugger Working Modes 106
	Step Mode 106
	Run Mode 106
	Time Run Mode 106

	An i mate Mode 107
	FSCODE Win dow 107
	ASM Win dow 108
	Watch Ed i tor 109
	Ex pres sions syn tax 110

	Break points 111
	Ex cep tions 113
	Stim u lus Ed i tor 114
	Ge neric struc ture of a Stim u lus File 115
	Dig i tal sig nals de scrip tion 115
	An a log sig nals de scrip tion 116
	Grouping sig nals in buses 116
	Pe ri odic sig nals 118
	Ran dom sig nals 120
	Thresh olds dec la ra tion 120
	Com ments 120

	Stim u lus Ed i tor Er ror Mes sages 121
	Sim u la tion Plot 125
	Plot win dow 125
	Plot win dow toolbar 126
	Plot win dow sta tus bar 126
	Se lecting plot items 126
	Zooming sim u la tion 127
	Cur sors 128
	Go To 128
	Cus tom izing the Plot win dow 128
	Plot Print Op tions 129

	Vari ables Dump win dow 130
	Sta tus Win dow 131
	Block Trace Win dow 132
	Mem ory Dump 132
	Op tions 133

	15 - DE VICE PRO GRAMMING 135
	De vice Pro gramming 135
	De vice pro gram ming sta tus mes sages 135
	De vice pro gram ming er ror mes sages 137

	Pro gramming Op tions 138
	Down load Op tions set tings 138

	Ad vanced Set tings 139

	AP PEN DIXES
	A - FEA TURES DE PEND ENT ON THE TARGET DE VICE A-3
	ST52x420/420Gx Fea tures 3
	Other Pre de fined Vari ables 4

	DeviceStatus() Func tion Pa ram e ters 5
	DeviceSet() func tion pa ram e ters 5
	In ter rupt Re lated Func tions 6
	Pe riph erals Con fig u ra tion Sheets 7
	Chip Clock sheet 7
	Port Pins sheet 8
	Watch dog sheet 9
	PWM-Timer 0 sheet 10
	A/D Con verter sheet 12

	Pe riph erals Set ting Blocks 14
	A/D Con verter set ting block 14
	Watch dog Set ting block 15

	Blocks Re lated to the In ter rupts 17
	Mem ory Spaces 18
	Pin names to be used in the Stim u lus file 19

	Debugger Ex cep tions list 20
	ST52x430Kx Fea tures 21
	DeviceStatus() Func tion Pa ram e ters 23
	DeviceSet() func tion pa ram e ters 24
	In ter rupt Re lated Func tions 25
	Pe riph erals Con fig u ra tion Sheets 26
	Chip Clock sheet 26
	Port Pins sheet 27
	Watch dog sheet 28
	PWM-Timer 0 sheet 28
	A/D Con verter sheet 31

	SCI Sheet 32
	Pe riph erals Set ting Blocks 34
	A/D Con verter set ting block 34
	Watch dog Set ting block 36

	SCI Set ting Block 37
	Blocks Re lated to the In ter rupts 38
	Mem ory Spaces 39
	Pin names to be used in the Stim u lus file 40

	Debugger Ex cep tions list 41

	B - PRO GRAMMER BOARD B-1
	Gen eral De scrip tion 1
	Soft ware In stal la tion 2
	Hard ware In stal la tion 2
	Pro gramming Phase 2
	De vice Pro gramming 3

	Hard ware De scrip tion 3

	C - FSASM AS SEM BLER PRO GRAMMING TOOL C-1
	In tro duc tion 1
	Sys tem Re quire ments 1
	In stalling FSAsm 2
	FSAsm Main Win dow 2
	FSAsm menus 2
	FSAsm toolbar 2
	FSAsm sta tus bar 2

	Man aging and Print ing Files 3
	Editing Com mands 3
	Tar get De vice Se lec tion 4
	Ma chine Code Gen er a tion 5
	Debugger 5
	De vice Pro gramming 6
	De vice pro gram ming sta tus mes sages 7
	De vice pro gram ming er ror mes sages 8

	Pro gramming Op tions 9
	Down load Op tions Set tings 9
	Ad vanced Set tings 10

	As sem bler Er ror List 11

	AS SEM BLER LAN GUAGE 15
	Pro gram Mem ory and Reg is ters™ Ar chi tec ture 15
	Pro gram Mem ory 15
	RAM Mem ory 17

	Con fig u ra tion Reg is ters 18
	In put Reg is ters 18
	Out put Reg is ters 18
	Flags 19
	Fuzzy Pro gramming in As sem bler 20
	Mem ber ship Func tions def i ni tion 20

	Rule In fer ence 21

	THE STRUC TURE OF A PRO GRAM 25
	Struc ture of a Ge neric Code Line 25
	Com ment se quences 25
	Line la bel 26
	In ter rupt Vec tors Def i ni tion 26
	Pro gram Mem ory Or ga ni za tion 26
	Data Man age ment 27
	Cur rent Pro gram Ad dress Man age ment 27

	 AS SEM BLER IN STRUC TION SET 29
	D - FUZZY LOGIC IN TRO DUC TION D-1
	Hu man Lan guage and In de ter mi nacy 1
	A Gen eral Over view 2
	The Lin guis tic Ap proach 2
	Fuzzy Logic, Fuzzy sets and Mem ber ship Func tions 4
	Fuzzy Rea soning 5
	The Math e mat i cal Def i ni tion of Fuzzy Sets 7
	Mem ber ship Func tions 9
	Fuzzy Set Op er a tors 9
	Set Com ple ment 10
	Set Un ion 12
	Set In ter sec tion 13
	The Math e mat i cal For mal ism of Fuzzy Logic 14
	Fuzzy Rea soning 16
	Fuzzy Com pu ta tion 17
	Bib li og ra phy 21

	E - FULL E-1
	Fuzzy Logic Lan guage 1
	FULL Lan guage El e ments 1
	White space 2
	Com ments 2
	Punc tu a tion 2
	Op er a tors 2
	Key words 3
	Iden ti fiers 3
	Con stants 4
	Ex pres sions 4
	Dec la ra tions 6
	Uni verses 6
	Mod i fiers 7
	Shapes 8
	Vari ables 10
	Rules 12

	FULL Pro gram Ex am ple 14
	FULL Lan guage Gram mar 16

