Features

* High-performance, Low-power AVR® 8-bit Microcontroller
* Advanced RISC Architecture
— 130 Powerful Instructions — Most Single-clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* Nonvolatile Program and Data Memories
— 8K Bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— 512 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
— 1K Byte Internal SRAM
— Programming Lock for Software Security
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
— Real Time Counter with Separate Oscillator
— Three PWM Channels
— 8-channel ADC in TQFP and MLF package
Six Channels 10-bit Accuracy
Two Channels 8-bit Accuracy
6-channel ADC in PDIP package
Four Channels 10-bit Accuracy
Two Channels 8-bit Accuracy
Byte-oriented Two-wire Serial Interface
Programmable Serial USART
— Master/Slave SPI Serial Interface
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator
Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
* /O and Packages
— 23 Programmable I/O Lines
— 28-lead PDIP, 32-lead TQFP, and 32-pad MLF
* Operating Voltages
— 2.7 -5.5V (ATmega8L)
— 4.5-5.5V (ATmega8)
* Speed Grades
— 0-8MHz (ATmega8lL)
— 0-16 MHz (ATmega8)
* Power Consumption at 4 Mhz, 3V, 25°C
— Active: 3.6 mA
— Idle Mode: 1.0 mA
— Power-down Mode: 0.5 pA
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Pin Configurations
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Overview The ATmega8 is a low-power CMOS 8-bit microcontroller based on the AVR RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega8
achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to
optimize power consumption versus processing speed.

Block Diagram Figure 1. Block Diagram
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The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega8 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23
general purpose I/O lines, 32 general purpose working registers, three flexible
Timer/Counters with compare modes, internal and external interrupts, a serial program-
mable USART, a byte oriented Two-wire Serial Interface, a 6-channel ADC (eight
channels in TQFP and MLF packages) where four (six) channels have 10-bit accuracy
and two channels have 8-bit accuracy, a programmable Watchdog Timer with Internal
Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt
system to continue functioning. The Power-down mode saves the register contents but
freezes the Oscillator, disabling all other chip functions until the next Interrupt or Hard-
ware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the
user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except asynchronous timer and
ADC, to minimize switching noise during ADC conversions. In Standby mode, the crys-
tal/resonator Oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low-power consumption.

The device is manufactured using Atmel’'s high density non-volatile memory technology.
The Flash Program memory can be reprogrammed In-System through an SPI serial
interface, by a conventional non-volatile memory programmer, or by an On-chip boot
program running on the AVR core. The boot program can use any interface to download
the application program in the Application Flash Memory. Software in the Boot Flash
Section will continue to run while the Application Flash Section is updated, providing
true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-
Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcon-
troller that provides a highly-flexible and cost-effective solution to many embedded
control applications.

The ATmega8 AVR is supported with a full suite of program and system development
tools, including C compilers, macro assemblers, program debugger/simulators, In-Cir-
cuit Emulators, and evaluation Kits.

Disclaimer Typical values contained in this data sheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

4 ATm eg a8(L) |
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Pin Descriptions
VCC
GND

Port B (PB7..PBO)/XTAL1/
XTAL2/TOSC1/TOSC2

Port C (PC5..PCO)

PC6/RESET

Port D (PD7..PDO)

RESET

XTAL1

XTAL2

24861-AVR-12/02

Digital supply voltage.
Ground.

Port B is an 8-bit bi-directional 1/0O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the invert-
ing Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the
inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as
TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated on page 56.

Port C is an 7-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electri-
cal characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on
this pin for longer than the minimum pulse length will generate a Reset, even if the clock
is not running. The minimum pulse length is given in Table 15 on page 36. Shorter
pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated on page 59.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source

current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega8 as listed on
page 61.

Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 36. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

ATMEL ;
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AVCC AVCC is the supply voltage pin for the A/D Converter, Port C (3..0), and ADC (7..6). It
should be externally connected to V., even if the ADC is not used. If the ADC is used,
it should be connected to V. through a low-pass filter. Note that Port C (5..4) use digital
supply voltage, Vc.

AREF AREEF is the analog reference pin for the A/D Converter.

ADCY7..6 (TQFP and MLF In the TQFP and MLF package, ADC7..6 serve as analog inputs to the A/D converter.
Package Only) These pins are powered from the analog supply and serve as 10-bit ADC channels.
About Code This datasheet contains simple code examples that briefly show how to use various
Examples parts of the device. These code examples assume that the part specific header file is

included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C compiler documentation for more details.

6 AT M EQ QS (L) —
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AVR CPU Core

Introduction

Architectural Overview

24861-AVR-12/02

This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Figure 2. Block Diagram of the AVR MCU Architecture
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In order to maximize performance and parallelism, the AVR uses a Harvard architecture
— with separate memories and buses for program and data. Instructions in the Program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the Program memory. This concept
enables instructions to be executed in every clock cycle. The Program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
the operation is executed, and the result is stored back in the Register File — in one
clock cycle.

ATMEL 7
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Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing — enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash Pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

The Program flow is provided by conditional and unconditional jump and call instruc-
tions, able to directly address the whole address space. Most AVR instructions have a
single 16-bit word format. Every Program memory address contains a 16- or 32-bit
instruction.

Program Flash memory space is divided in two sections, the Boot program section and
the Application program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The Stack Pointer SP is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
global interrupt enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The 1/0O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other 1/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - Ox5F.

AT M EQ QS (L) —
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Arithmetic Logic Unit —
ALU

Status Register

24861-AVR-12/02

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories — arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0

| I | 7 | H | s | v N z c | sReG
Read/Write R/W RIW R/W RIW R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—1I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the Instruction Set Reference.

e Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

e Bit 5—H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit,S=N0JV

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3-V: Two’'s Complement Overflow Flag

The Two's Complement Overflow Flag V supports two’'s complement arithmetics. See
the “Instruction Set Description” for detailed information.

ATMEL ;
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¢ Bit 2 - N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit 0 - C: Carry Flag

The Carry Flag C indicates a Carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to

Register File achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:
* One 8-bit output operand and one 8-bit result input.
« Two 8-bit output operands and one 8-bit result input.
e Two 8-bit output operands and one 16-bit result input.
e One 16-bit output operand and one 16-bit result input.
Figure 3 shows the structure of the 32 general purpose working registers in the CPU.
Figure 3. AVR CPU General Purpose Working Registers
7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 OxOF
Working R16 0x10
Registers R17 0x11
R26 O0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.
As shown in Figure 3, each register is also assigned a Data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.
10 ATmega8(L) |
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The X-register, Y-register and
Z-register

Stack Pointer
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The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the Data Space.
The three indirect address registers X, Y and Z are defined as described in Figure 4.

Figure 4. The X-, Y- and Z-Registers

15 XH XL
X-register |7 o7 o]
R27 (Ox1B) R26 (OX1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (OX1D) R28 (OX1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R31 (Ox1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the Instruction Set
Reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer register
always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above 0x60. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by
two when the return address is pushed onto the Stack with subroutine call or interrupt.
The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two when address is popped from the Stack
with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ATMEL i
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Timing

Reset and Interrupt
Handling
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This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clk.p, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 5 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 5. The Parallel Instruction Fetches and Instruction Executions
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Figure 6 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 6. Single Cycle ALU Operation
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The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate Program Vector in the Program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 216 for details.

The lowest addresses in the Program memory space are by default defined as the
Reset and Interrupt vectors. The complete list of vectors is shown in “Interrupts” on page
44. The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INTO
— the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of

12 AT M EQ QS (L) —

24861-AVR-12/02



A\ T eg a8 (L)

24861-AVR-12/02

the boot Flash section by setting the Interrupt Vector Select (IVSEL) bit in the General
Interrupt Control Register (GICR). Refer to “Interrupts” on page 44 for more information.
The Reset vector can also be moved to the start of the boot Flash section by program-
ming the BOOTRST Fuse, see “Boot Loader Support — Read-While-Write Self-
Programming” on page 204.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the global interrupt enable bit is cleared, the corre-
sponding Interrupt Flag(s) will be set and remembered until the global interrupt enable
bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; store SREG val ue

cli ; disable interrupts during tinmed sequence
shi EECR, EEMN\E ; start EEPROM write

sbi EECR, EEWE

out SREG r16 ; restore SREG value (I-bit)

C Code Example

char cSREG

CSREG = SREG /* store SREG val ue */

/* disable interrupts during tinmed sequence */
_CLEQ);

EECR | = (1<<EEMAE); /* start EEPROM write */
EECR | = (1<<EEVE);

SREG = cSREG /* restore SREG value (I-bit) */

ATMEL i
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When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in the following example.

Assembly Code Example

sei ; set global interrupt enable

sleep; enter sleep, waiting for interrupt
note: will enter sleep before any pending
interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles, the Program Vector address for the actual interrupt
handling routine is executed. During this 4-clock cycle period, the Program Counter is
pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (2 bytes) is popped back from the Stack, the Stack
Pointer is incremented by 2, and the I-bit in SREG is set.

14 AT M EQ QS (L) —
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This section describes the different memories in the ATmega8. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmega8 features an EEPROM Memory for data storage. All three mem-
ory spaces are linear and regular.

The ATmega8 contains 8K bytes On-chip In-System Reprogrammable Flash memory
for program storage. Since all AVR instructions are 16- or 32-bits wide, the Flash is
organized as 4K x 16 bits. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega8 Program Counter (PC) is 12 bits wide, thus addressing the 4K Program mem-
ory locations. The operation of Boot Program section and associated Boot Lock bits for
software protection are described in detail in “Boot Loader Support — Read-While-Write
Self-Programming” on page 204. “Memory Programming” on page 216 contains a
detailed description on Flash Programming in SPI- or Parallel Programming mode.

Constant tables can be allocated within the entire Program memory address space (see
the LPM — Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 12.

Figure 7. Program Memory Map

$000

Application Flash Section

B
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Figure 8 shows how the ATmega8 SRAM Memory is organized.

The lower 1120 Data Memory locations address the Register File, the /O Memory, and
the internal data SRAM. The first 96 locations address the Register File and /0 Mem-
ory, and the next 1024 locations address the internal data SRAM.

The five different addressing modes for the Data memory cover: Direct, Indirect with
Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 1024 bytes of inter-
nal data SRAM in the ATmega8 are all accessible through all these addressing modes.
The Register File is described in “General Purpose Register File” on page 10.

Figure 8. Data Memory Map

Register File Data Address Space

RO [~ $0000

R1 $0001

R2 $0002

R29 $001D
R30 $001E
rRa2 $001F

I/O Registers

$00 $0020
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$02 $0022
$3D $005D
$3E $005E
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$0060
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$045F
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This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkp, cycles as described in Figure
9.

Figure 9. On-chip Data SRAM Access Cycles
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The ATmega8 contains 512 bytes of data EEPROM memory. It is organized as a sepa-
rate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described bellow, specifying the EEPROM Address Registers, the
EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 216 contains a detailed description on EEPROM Pro-
gramming in SPI- or Parallel Programming mode.

The EEPROM Access Registers are accessible in the 1/O space.

The write access time for the EEPROM is given in Table 1 on page 19. A self-timing
function, however, lets the user software detect when the next byte can be written. If the
user code contains instructions that write the EEPROM, some precautions must be
taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on Power-
up/down. This causes the device for some period of time to run at a voltage lower than
specified as minimum for the clock frequency used. See “Preventing EEPROM Corrup-
tion” on page 21. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.
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Bit 15 14 13 12 11 10 9 8
- - - - - - - EEARS EEARH

EEAR7 EEARG6 EEARS5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R R R RIW
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0
X X X X X X X X

* Bits 15..9 — Res: Reserved Bits

These bits are reserved bits in the ATmega8 and will always read as zero.

* Bits 8..0 - EEARS8..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL - specify the EEPROM
address in the 512 bytes EEPROM space. The EEPROM data bytes are addressed lin-
early between 0 and 511. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

Bit 7 6 5 4 3 2 1 0

| wss LSB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDRY7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 6 5 4 3 2 1 0

| - - - - EERIE | EEMWE | EEWE EERE | EECR
Read/Write R R R R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 X 0

* Bits 7..4 — Res: Reserved Bits

These bits are reserved bits in the ATmega8 and will always read as zero.

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

* Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE s set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

18 AT M EQ QS (L) —
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* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

L A

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a boot loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on
page 204 for details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

» Bit 0— EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.

Table 1. EEPROM Programming Time

Number of Calibrated RC
Symbol Oscillator Cycles® Typ Programming Time

EEPROM Write (from CPU) 8448 8.5ms

Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse settings.

ATMEL i
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The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by dis-
abling interrupts globally) so that no interrupts will occur during execution of these
functions. The examples also assume that no Flash boot loader is present in the soft-
ware. If such code is present, the EEPROM write function must also wait for any
ongoing SPM command to finish.

Assembly Code Example

EEPROM wri t e:
; Wait for conpletion of previous wite
sbi ¢ EECR, EEVEE
rinp EEPROM write
Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, rl7
; Wite data (r16) to data register
out EEDR r16
; Wite logical one to EEMWE
sbi EECR, EEME
Start eepromwite by setting EEVE
shi EECR, EEVE
ret

C Code Example

voi d EEPROM wri t e(unsi gned int ui Address, unsigned char ucData)
{
/* Wait for conpletion of previous wite */
whi | e( EECR & (1<<EEVE))
/* Set up address and data registers */
EEAR = ui Address;
EEDR = ucDat a;
/* Wite logical one to EEME */
EECR | = (1<<EEMVE) ;
/* Start eepromwite by setting EEVE */
EECR | = (1<<EEVE);
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Preventing EEPROM
Corruption
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The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEPROM r ead:
; Wait for conpletion of previous wite
sbi ¢ EECR, EEVEE
rj np EEPROM read
Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, rl7
Start eepromread by witing EERE
sbi EECR, EERE
Read data from data register
in rl16, EEDR
ret

C Code Example

unsi gned char EEPROM read(unsigned int ui Address)
{

/* Wait for conpletion of previous wite */

whi | e( EECR & ( 1<<EEVE))

/* Set up address register */

EEAR = ui Addr ess;

/* Start eepromread by witing EERE */
EECR | = (1<<EERE);

/* Return data fromdata register */
return EEDR;

During periods of low V. the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Second, the CPU itself can execute instructions incorrectly, if the sup-
ply voltage is too low.

EEPROM data corruption can easily be avoided by following this design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply volt-
age. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low V. Reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

ATMEL 2
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The 1/0 space definition of the ATmega8 is shown in “” on page 257.

All ATmega8 I/Os and peripherals are placed in the 1/0 space. The I/O locations are
accessed by the IN and OUT instructions, transferring data between the 32 general pur-
pose working registers and the I/O space. 1/0 Registers within the address range 0x00 -
Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers,
the value of single bits can be checked by using the SBIS and SBIC instructions. Refer
to the instruction set section for more details. When using the 1/O specific commands IN
and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing 1/0 Registers
as data space using LD and ST instructions, 0x20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/0 memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the 1/0 Register, writing a one back into
any flag read as set, thus clearing the flag. The CBI and SBI instructions work with reg-
isters Ox00 to Ox1F only.

The 1/0 and peripherals control registers are explained in later sections.

22 AT M EQ QS (L) —
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Flash Clock — clkg ash
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Figure 10 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 31. The clock systems
are detailed Figure 10.

Figure 10. Clock Distribution

Asynchronous General /O Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
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clk o
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Control Unit
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Source Clock Watchdog Clock
Clock Watchdog
Multiplexer Oscillator
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Timer/Counter External RC Crystal Low-Frequency Calibrated RC
Oscillator Oscillator External Clock Oscillator Crystal Oscillator Oscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the Data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

The 1/O clock is used by the majority of the 1/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted. Also note that address recognition in the TWI
module is carried out asynchronously when clk, is halted, enabling TWI address recep-
tion in all sleep modes.

The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

ATMEL 2



Asynchronous Timer Clock —

ADC Clock — clkapc

Clock Sources

AIMEL

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external 32 kHz clock crystal. The dedicated clock domain allows using
this Timer/Counter as a real-time counter even when the device is in sleep mode. The
Asynchronous Timer/Counter receives the same 32 kHz Oscillator as the chip clock.
Thus, asyncronous operation is only available while the chip is clocked on the Internal
Oscillator.

The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/0O clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Table 2. Device Clocking Options Select™

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from reset, there is as an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator
cycles used for each time-out is shown in Table 3. The frequency of the Watchdog
Oscillator is voltage dependent as shown in “ATmega8 Typical Characteristics — Prelim-
inary Data”. The device is shipped with CKSEL =*“0001" and SUT = “10" (1 MHz Internal
RC Oscillator, slowly rising power).

Table 3. Number of Watchdog Oscillator Cycles

Typical Time-out (V¢ =5.0V) | Typical Time-out (V¢ = 3.0V) Number of Cycles
41 ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)
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Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 11. Either a quartz
crystal or a ceramic resonator may be used. The CKOPT Fuse selects between two dif-
ferent Oscillator amplifier modes. When CKOPT is programmed, the Oscillator output
will oscillate a full rail-to-rail swing on the output. This mode is suitable when operating
in a very noisy environment or when the output from XTAL2 drives a second clock
buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the
Oscillator has a smaller output swing. This reduces power consumption considerably.
This mode has a limited frequency range and it cannot be used to drive other clock
buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and
16 MHz with CKOPT programmed. C1 and C2 should always be equal for both crystals
and resonators. The optimal value of the capacitors depends on the crystal or resonator
in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in
Table 4. For ceramic resonators, the capacitor values given by the manufacturer should
be used. For more information on how to choose capacitors and other details on Oscilla-
tor operation, refer to the Multi-purpose Oscillator application note.

Figure 11. Crystal Oscillator Connections

c2

I |XTAL2
c1 7

o St b IxTAl

GND

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in

Table 4.
Table 4. Crystal Oscillator Operating Modes
Frequency Recommended Range for Capacitors
CKOPT | CKSEL3..1 Range(MHz)® C1 and C2 for Use with Crystals (pF)
1 101@ 0.4-0.9 -
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12 - 22
0 101, 110, 111 10< 12 - 22

Notes: 1. The frequency ranges are preliminary values.
2. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 5.

ATMEL 2
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Table 5. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time Additional Delay
from Power-down from Reset
CKSELO | SUT1..0 and Power-save (Vec =5.0V) Recommended Usage

0 00 258 CK® 41ms (?gramlc resonator, fast
rising power

0 o1 258 CK® 65 ms C_:e_ramlc resonator, slowly
rising power

0 10 1K CK®@ _ Ceramic resonator, BOD
enabled

0 11 1K CK® 41ms C?gramlc resonator, fast
rising power

1 00 1K CK® 65 ms C_:e_ramlc resonator, slowly
rising power

1 01 16K CK _ Crystal Oscillator, BOD
enabled

1 10 16K CK 41ms (?rystal Oscillator, fast
rising power

1 11 16K CK 65 ms C_:r_ystal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum fre-

2.

guency of the device, and only if frequency stability at start-up is not important for the

application. These options are not suitable for crystals.

These options are intended for use with ceramic resonators and will ensure fre-
guency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-fre-
quency Crystal Oscillator must be selected by setting the CKSEL Fuses to “1001”. The

crystal should be connected as shown in Figure 11. By programming the CKOPT Fuse,
the user can enable internal capacitors on XTAL1 and XTALZ2, thereby removing the
need for external capacitors. The internal capacitors have a nominal value of 36 pF.
Refer to the 32 kHz Crystal Oscillator application note for details on Oscillator operation
and how to choose appropriate values for C1 and C2.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 6.

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vec =5.0v) Recommended Usage
00 1K CKW 4.1ms Fast rising power or BOD enabled
01 1K CKW 65 ms Slowly rising power
10 32K CK 65 ms Stable frequency at start-up
11 Reserved
Note: 1. These options should only be used if frequency stability at start-up is not important for

the application.
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External RC Oscillator
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For timing insensitive applications, the external RC configuration shown in Figure 12
can be used. The frequency is roughly estimated by the equation f = 1/(3RC). C should
be at least 22 pF. By programming the CKOPT Fuse, the user can enable an internal 36
pF capacitor between XTAL1 and GND, thereby removing the need for an external
capacitor. For more information on Oscillator operation and details on how to choose R
and C, refer to the External RC Oscillator application note.

Figure 12. External RC Configuration

VCC
R NC ——XTAL2
I XTAL1
°T
l GND

The Oscillator can operate in four different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..0 as shown in
Table 7.

Table 7. External RC Oscillator Operating Modes

CKSEL3..0 Frequency Range (MHz)
0101 <09
0110 0.9-3.0
0111 3.0-8.0
1000 8.0-12.0

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 8.

Table 8. Start-up Times for the External RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vee =5.0V) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 4.1 ms Fast rising power
10 18 CK 65 ms Slowly rising power
11 6 CK® 4.1ms Fast rising power or BOD enabled

Note: 1. This option should not be used when operating close to the maximum frequency of
the device.

ATMEL 2
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Calibrated Internal RC The calibrated internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. Al

Oscillator frequencies are nominal values at 5V and 25°C. This clock may be selected as the sys-
tem clock by programming the CKSEL Fuses as shown in Table 9. If selected, it will
operate with no external components. The CKOPT Fuse should always be unpro-
grammed when using this clock option. During reset, hardware loads the calibration byte
into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. At 5V,
25°C and 1.0 MHz Oscillator frequency selected, this calibration gives a frequency
within + 1% of the nominal frequency. When this Oscillator is used as the chip clock, the
Watchdog Oscillator will still be used for the Watchdog Timer and for the Reset Time-
out. For more information on the pre-programmed calibration value, see the section
“Calibration Byte” on page 218.

Table 9. Internal Calibrated RC Oscillator Operating Modes

CKSEL3..0 Nominal Frequency (MHz)
0001® 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 10. XTAL1 and XTALZ2 should be left unconnected (NC).

Table 10. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vec =5.0v) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1 ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.
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Bit 7 6 5 4 3 2 1 0

| ca7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO | osccAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

¢ Bits 7..0 — CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove pro-
cess variations from the Oscillator frequency. During Reset, the 1 MHz calibration value
which is located in the signature row High Byte (address 0x00) is automatically loaded
into the OSCCAL Register. If the internal RC is used at other frequencies, the calibration
values must be loaded manually. This can be done by first reading the signature row by
a programmer, and then store the calibration values in the Flash or EEPROM. Then the
value can be read by software and loaded into the OSCCAL Register. When OSCCAL is
zero, the lowest available frequency is chosen. Writing non-zero values to this register
will increase the frequency of the Internal Oscillator. Writing OxFF to the register gives
the highest available frequency. The calibrated Oscillator is used to time EEPROM and
Flash access. If EEPROM or Flash is written, do not calibrate to more than 10% above
the nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that the
Oscillator is intended for calibration to 1.0, 2.0, 4.0, or 8.0 MHz. Tuning to other values is
not guaranteed, as indicated in Table 11.

Table 11. Internal RC Oscillator Frequency Range

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency (%) Nominal Frequency (%)
0x00 50 100
Ox7F 75 150
OxFF 100 200

ATMEL 2



External Clock

Timer/Counter Oscillator

AIMEL

To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 13. To run the device on an external clock, the CKSEL Fuses must be pro-
grammed to “0000". By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND.

Figure 13. External Clock Drive Configuration
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When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 12.

Table 12. Start-up Times for the External Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vee =5.0v) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1 ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behaviour. It is
required to ensure that the MCU is kept in Reset during such changes in the clock
frequency.

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the
crystal is connected directly between the pins. No external capacitors are needed. The
Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external
clock source to TOSC1 is not recommended.
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Power Man agement Sleep modes enable the application to shut down unused modules in the MCU, thereby
and Sleep Modes saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

To enter any of the five sleep modes, the SE bit in MCUCR must be written to logic one
and a SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the
MCUCR Register select which sleep mode (Idle, ADC Noise Reduction, Power-down,
Power-save, or Standby) will be activated by the SLEEP instruction. See Table 13 for a
summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU
wakes up. The MCU is then halted for four cycles in addition to the start-up time, it exe-
cutes the interrupt routine, and resumes execution from the instruction following SLEEP.
The contents of the Register File and SRAM are unaltered when the device wakes up
from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from
the Reset vector.

Note that the Extended Standby mode present in many other AVR MCUs has been
removed in the ATmega8, as the TOSC and XTAL inputs share the same physical pins.

Figure 10 on page 23 presents the different clock systems in the ATmega8, and their
distribution. The figure is helpful in selecting an appropriate sleep mode.

MCU Control Register — The MCU Control Register contains control bits for power management.
MCUCR _
Bit 7 6 5 4 3 2 1 0
I s | svm2 | smi | smo | iscil | IsCi0 | IsCo1 | I1SC00 | MCUCR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmer’s purpose, it is recommended to set the Sleep Enable (SE) bit just
before the execution of the SLEEP instruction.

e Bits 6..4 — SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 13.

Table 13. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby®

Note: 1. Standby mode is only available with external crystals or resonators.

ATMEL o
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When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-
wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue
operating. This sleep mode basically halts clk.p, and clkg asy, While allowing the other
clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered.

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter
ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the external
interrupts, the Two-wire Serial Interface address watch, Timer/Counter2 and the
Watchdog to continue operating (if enabled). This sleep mode basically halts clk,q,
Clkepy, and clkg asy, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart form the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface address match inter-
rupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, or an external level
interrupt on INTO or INT1, can wake up the MCU from ADC Noise Reduction mode.

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the External Oscillator is stopped, while the external
interrupts, the Two-wire Serial Interface address watch, and the Watchdog continue
operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, a
Two-wire Serial Interface address match interrupt, or an external level interrupt on INTO
or INT1, can wake up the MCU. This sleep mode basically halts all generated clocks,
allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 64 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
Fuses that define the Reset Time-out period, as described in “Clock Sources” on page
24.

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e. the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer
Overflow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK, and the global interrupt
enable bit in SREG is set.

If the asynchronous timer is NOT clocked asynchronously, Power-down mode is recom-
mended instead of Power-save mode because the contents of the registers in the
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Standby Mode

asynchronous timer should be considered undefined after wake-up in Power-save mode
if AS2 is 0.

This sleep mode basically halts all clocks except clk,gsy, allowing operation only of asyn-
chronous modules, including Timer/Counter 2 if clocked asynchronously.

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in 6 clock cycles.

Table 14. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources
TWI SPM/

Sleep Main Clock Timer Osc. | INT1| Address| Timer| EEPROM Other
Mode Clkepy| ClKeash| ClKio| Clkapc | Clkagy| Source Enabled| Enabled | INTO| Match 2 Ready | ADC| I/O
Idle X X X X X@ X X X X X X
ADC Noise X X X NG X® X X X X
Reduction
Power NE) X
Down
Power X X@ X® X X@
Save
Standby™® X X® X

Notes: 1. External Crystal or resonator selected as clock source.

2. If AS2 bitin ASSR is set.

3. Only level interrupt INT1 and INTO.

Minimizing Power
Consumption

Analog-to-Digital Converter
(ADC)

Analog Comparator

24861-AVR-12/02

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should
be disabled before entering any sleep mode. When the ADC is turned off and on again,
the next conversion will be an extended conversion. Refer to “Analog-to-Digital Con-
verter” on page 191 for details on ADC operation.

When entering Idle mode, the Analog Comparator should be disabled if not used. When
entering ADC Noise Reduction mode, the Analog Comparator should be disabled. In the
other sleep modes, the Analog Comparator is automatically disabled. However, if the
Analog Comparator is set up to use the Internal Voltage Reference as input, the Analog
Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Ref-
erence will be enabled, independent of sleep mode. Refer to “Analog Comparator” on
page 188 for details on how to configure the Analog Comparator.
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If the Brown-out Detector is not needed in the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all
sleep modes, and hence, always consume power. In the deeper sleep modes, this will
contribute significantly to the total current consumption. Refer to “Brown-out Detection”
on page 38 for details on how to configure the Brown-out Detector.

The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tor, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 40 for details on the
start-up time.

If the Watchdog Timer is not needed in the application, this module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Watchdog Timer” on page 41 for details on how
to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power.
The most important thing is then to ensure that no pins drive resistive loads. In sleep
modes where the both the 1/O clock (clk,,) and the ADC clock (clk,pc) are stopped, the
input buffers of the device will be disabled. This ensures that no power is consumed by
the input logic when not needed. In some cases, the input logic is needed for detecting
wake-up conditions, and it will then be enabled. Refer to the section “Digital Input
Enable and Sleep Modes” on page 53 for details on which pins are enabled. If the input
buffer is enabled and the input signal is left floating or have an analog signal level close
to Vc/2, the input buffer will use excessive power.
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System Control and
Reset

Resetting the AVR

Reset Sources

24861-AVR-12/02

During Reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the boot section or vice versa. The circuit diagram in Figure 14
shows the Reset Logic. Table 15 defines the electrical parameters of the reset circuitry.

The 1/O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
internal reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the
CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 24.

The ATmega8 has four sources of Reset:

* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (Vpgr).

« External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

e Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V. is below the
Brown-out Reset threshold (Vzor) and the Brown-out Detector is enabled.

ATMEL =
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Figure 14. Reset Logic
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Table 15. Reset Characteristics
Symbol | Parameter Condition Min | Typ Max | Units

Power-on Reset Threshold

Voltage (rising)® 14 | 23 Y,

Veor
Power-on Reset Threshold 13 23 v
Voltage (falling) ' ’

VRsT RESET Pin Threshold Voltage 0.1 0.9 Vee

Minimum pulse width on

'RsT | RESET Pin 50 ns
Brown-out Reset Threshold BODLEVEL=1 | 25 2.7 3.2

Veor | Voltage® BODLEVEL=0 | 37 | 40 | 45 |
Minimum low voltage period for | BODLEVEL =1 2 us

t5op Brown-out Detection BODLEVEL = 0 5 s

Viyst Brown-out Detector hysteresis 130 mvV

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vpor
(falling).

2. Vgor may be below nominal minimum operating voltage for some devices. For
devices where this is the case, the device is tested down to Vi = Vor during the
production test. This guarantees that a Brown-out Reset will occur before V. drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 1 for ATmega8L and BODLEVEL = 0 for
ATmega8. BODLEVEL = 1 is not applicable for ATmegas8.
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Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 15. The POR is activated whenever V. is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after V. rise. The RESET signal is activated
again, without any delay, when V. decreases below the detection level.

Figure 15. MCU Start-up, RESET Tied to V¢
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Figure 16. MCU Start-up, RESET Extended Externally
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Brown-out Detection
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An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 15) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage — Vgt OnN its positive edge, the delay
counter starts the MCU after the time-out period t;o 1 has expired.

Figure 17. External Reset During Operation
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ATmega8 has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed),
or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to ensure spike
free Brown-out Detection. The hysteresis on the detection level should be interpreted as
Veor+ = Veor * Vuyst/2 and Vgor. = Vgor - Viyst/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is
enabled (BODEN programmed), and V. decreases to a value below the trigger level
(Vgor. In Figure 18), the Brown-out Reset is immediately activated. When V¢ increases
above the trigger level (Vgor, in Figure 18), the delay counter starts the MCU after the
time-out period tyot has expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level
for longer than tzop given in Table 15.

Figure 18. Brown-out Reset During Operation
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Watchdog Reset

MCU Control and Status
Register - MCUCSR
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When the Watchdog times out, it will generate a short reset pulse of 1 CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the time-out period
trout- Refer to page 41 for details on operation of the Watchdog Timer.

Figure 19. Watchdog Reset During Operation
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The MCU Control and Status Register provides information on which reset source
caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0
I - | - | - = WDRF BORF | EXTRF | PORF | MCUCSR

Read/Write R R R R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

* Bit 7..4 — Res: Reserved Bits

These bits are reserved bits in the ATmega8 and always read as zero.

« Bit 3—- WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

e Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

e Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

« Bit 0 — PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then reset the MCUCSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.
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Reference

Voltage Reference Enable
Signals and Start-up Time
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1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the

user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user

can avoid the three conditions above to ensure that the reference is turned off before

entering Power-down mode.

Table 16. Internal Voltage Reference Characteristics

ATmega8 features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC. The
2.56V reference to the ADC is generated from the internal bandgap reference.

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 16. To save power, the reference is not always turned
on. The reference is on during the following situations:

Symbol Parameter Min Typ Max Units
Vie Bandgap reference voltage 1.15 1.23 1.40 \Y,
tge Bandgap reference start-up time 40 70 Hs
e Bandgap reference current consumption 10 HA
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Watchdog Timer

Watchdog Timer Control
Register - WDTCR
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The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at
1 MHz. This is the typical value at V- = 5V. See characterization data for typical values
at other V. levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 17 on page 42. The WDR — Watchdog Reset
— instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega8 resets and executes from the Reset vector. For timing
details on the Watchdog Reset, refer to page 39.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be
followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer
Control Register for details.

Figure 20. Watchdog Timer
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Bit 7 6 5 a4 3 2 1 0
| - - - WDCE WDE WDP2 WDP1 WDPO | WDTCR
Read/Write R R R RIW RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..5 — Res: Reserved Bits

These bits are reserved bits in the ATmega8 and will always read as zero.

e Bit 4 - WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure. In
Safety Level 1 and 2, this bit must also be set when chan