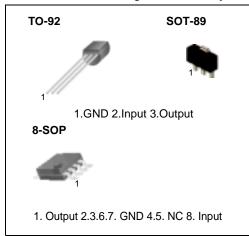
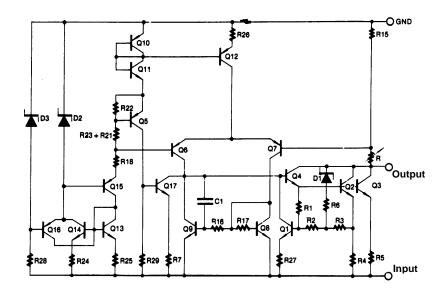


MC79LXXA/LM79LXXA


3-Terminal 0.1A Negative Voltage Regulator

Features


- Output current up to 100mA
- No external components
- Internal thermal over load protection
- · Internal short circuit current limiting
- Output Voltage Offered in \pm 5% Tolerance
- Output Voltage of -5V, -8V, -12V, -15V, -18V and -24V

Description

These regulators employ internal current limiting and thermal shutdown, making them essentially indestructible.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V_0 = -5V to -8V) (for V_0 = -12V to -18V) (for V_0 = -24V)	Vı	-30 -35 -40	V
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics(MC79L05A/LM79L05A)

(VI = -10V, IO = 40mA, CI = $0.33\mu F$, CO = $0.1\mu F$, $0^{\circ}C \le TJ \le +125^{\circ}C$, unless otherwise specified)

Paramete	r	Symbol	Conditions		Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = +25 °C		- 4.8	- 5.0	- 5.2	V
Line Regulation (Not	te1)		_	-7.0V ≥ V _I ≥ -20V	-	15	150	mV
		ΔVΟ	T _J =+25 °C -8V ≥ V _I ≥ -20V	-	-	100	mV	
Load Regulation (No	sto1)	4\/0	T1-+25°C	$1.0\text{mA} \le I_{O} \le 100\text{mA}$	-	20	60	mV
Load Negulation (NC	ne i)	ΔV_O $T_J = +25 ^{\circ}C$ $1.0 \text{mA} \leq I_O \leq 40 \text{mA}$	-	10	30	mV		
Output Voltage		Vo	$-7.0V \ge V_1 \ge -20V$, $1.0mA \le I_0 \le 40mA$		- 4.75	-	- 5.25	V
Output Voltage		VO	V _I = -10V, 1.0mA ≤ I _O ≤ 70mA		- 4.75	-	- 5.25	V
Quiescent Current		lo	T _J =+ 25 °C		-	2.0	5.5	mA
Quiescent Current		lQ	T _J = +125 °C		-	-	6.0	
Quiescent Current	with line	ΔlQ	-8V ≥ V _I ≥ -20V		-	-	1.5	mA
Change	with load	ΔlQ	1.0mA ≤ IO ≤ 40mA		-	-	0.1	mA
Output Noise Voltage		VN	$T_A = +25^{\circ}C,10Hz \le f \le 100KHz$		-	30	-	μV
Ripple Rejection		RR	$f = 120Hz, -8V \ge V_I \ge -18V$ $T_J = +25^{\circ}C$		41	60	-	dB
Dropout Voltage		VD	TJ = +25°C		-	1.7	-	V

^{1.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC79L08A)

(VI = -14V, IO = 40mA, CI = $0.33\mu F$, CO = $0.1\mu F$, $0^{\circ}C \le TJ \le +125^{\circ}C$, unless otherwise specified)

Paramete	r	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = +25 °C		- 7.7	- 8.0	- 8.3	V
Line Regulation(No	te1)			-10.3V ≥ V _I ≥ -23V	-	-	175	mV
		ΔVΟ	T _J =+25 °C -12V ≥ V _I ≥ -23V	-	-	125	mV	
Load Regulation (N	oto1)	ΔVΩ	T _J =+25 °C	$1.0\text{mA} \le I_0 \le 100\text{mA}$	-	-	80	mV
Load Regulation (N	ole i)	ΔνΟ	1J=+25 C	$1.0\text{mA} \le I_0 \le 40\text{mA}$	-	-	40	mV
Output Voltage		Vo	$-10.3V \ge V_I \ge -23V$, $1.0mA \le I_0 \le 40mA$		- 7.6	-	- 8.4	V
Output Voltage		٧٥	$V_I = -14V$, $1.0mA \le I_0 \le 70mA$		- 7.6	-	- 8.4	V
Quiescent Current			T _j =+ 25 °C		-	-	6.0	Λ
Quiescent Current		Iq	T _j = +125 °C		-	-	5.5	mA
Quiescent Current	with line	A.I.O.	-11.7V ≥ V _I ≥ -23V		-	-	1.5	mA
Change	with load	ΔIQ	ΔIQ 1.0mA $\leq I_0 \leq 40$ mA		-	-	0.1	mA
Output Noise Voltage		VN	$T_j = +25^{\circ}C,10Hz \le f \le 100KHz$		-	50	-	μV
Ripple Rejection		RR	$f = 120$ Hz, -11 V \ge V _I \ge -21 V $T_j = +25$ °C		39	55	-	dB
Dropout Voltage		VD	Tj = +25°C		-	1.7	-	V

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics(MC79L12A)

(VI = -19V, IO = 40mA, CI = $0.33\mu F$, CO = $0.1\mu F$, $0^{\circ}C \leq TJ \leq +125^{\circ}C$, unless otherwise specified)

Parameter		Symbol	Co	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = +25 °C		-11.5	-12.0	-12.5	V
Line Regulation (No	te1)			-14.5V ≥ V _I ≥ -27V	-	-	250	mV
		ΔVΟ	T _J = +25 °C -16V ≥ V _I ≥ -27V	-	-	200	mV	
Load Regulation (No	oto1)	ΔVο	T _J = +25 °C	1.0mA ≤ I _O ≤ 100mA	-	-	100	mV
Load Regulation (NC	ne i)	ΔνΟ	1J = +25 C	1.0mA ≤ I _O ≤ 40mA	-	-	50	mV
Output Voltage		Vo	-14.5V > V _I > -27V, 1.0mA ≤ I _O ≤ 40mA -		-11.4	-	-12.6	V
Output Voltage		٧٥	V _I = -19V, 1.0mA ≤ I _O ≤ 70mA		-11.4	-	-12.6	V
Quiagant Current		lo.	T _J = +25 °C		-	-	6.0	m ^
Quiescent Current		lQ	T _J = +125 °C		-	-	6.5	mA
Quiescent Current	with line	ΔlQ	-16V ≥ V _I ≥ -27V		-	-	1.5	mA
Change	with load	ΔlQ	ΔIQ 1.0mA $\leq IO \leq 40$ mA		-	-	0.1	mA
Output Noise Voltage		VN	T _A = +25°C,10Hz ≤ f ≤ 100KHz		-	80	-	μV
Ripple Rejection R		RR	f = 120Hz, -15V≥ V _I ≥ -25V T _J = +25°C		37	42	-	dB
Dropout Voltage		VD	TJ = +25°C		-	1.7	-	V

^{1.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics(MC79L15A)

(VI = -23V, IO = 40mA, CI = $0.33\mu F$, CO = $0.1\mu F$, $0^{\circ}C \le TJ \le +125^{\circ}C$, unless otherwise specified)

Paramete	r	Symbol	Conditions		Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = +25 °C		-14.4	-15.0	-15.6	V
Line Regulation (N	ote1)	ΔVΩ		-17.5V ≥ V _I ≥ -30V	-	-	300	mV
			T _J = +25 °C	-20V ≥ V _I ≥ -30V	-	-	250	mV
Load Regulation (N	loto1)	ΔVΩ	TJ = +25 °C	1.0mA ≤ I _O ≤ 100mA	-	-	150	mV
Load Regulation (N	10161)	ΔνΟ	1J = +25 C	1.0mA ≤ I _O ≤ 40mA	-	-	75	mV
Output Voltage		Vo	-17.5V ≥ V _I ≥ -30V, 1.0mA ≤ I _O ≤ 40mA		-14.25	-	-15.75	V
Output voitage	Output Voltage		V _I = -23V, 1.0mA ≤ I _O ≤ 70mA		-14.25	-	-15.75	V
Outleasent Current		lo.	T _J = +25°C		-	-	6.0	A
Quiescent Current		IQ -	T _J = +125°C		-	ı	6.5	mA
Quiescent Current	with line	ΔlQ	-20V ≥ V _I ≥ -30V	1	-	-	1.5	mA
Change	with load	ΔlQ	1.0mA ≤ I _O ≤ 40mA		-	ı	0.1	mA
Output Noise Voltage V_N $T_A = +25^{\circ}C,10Hz \le f \le 100KHz$		-	90	-	μV			
Ripple Rejection		RR	$f = 120Hz, -18.5V \ge V_I \ge -28.5V$ $T_J = +25^{\circ}C$		34	39		dB
Dropout Voltage		VD	TJ = +25°C		-	1.7	-	V

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics(MC79L18A)

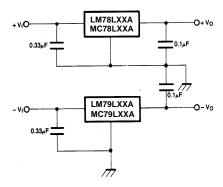
(VI = -27V, IO = 40mA, CI = $0.33\mu F$, CO = $0.1\mu F$, $0^{\circ}C \le TJ \le +125^{\circ}C$, unless otherwise specified)

Paramete	r	Symbol	С	onditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	TJ = +25 °C		-17.3	-18.0	-18.7	V
Line Regulation (Not	te1)			-20.7V ≥ V _I ≥ -33V	-	-	325	mV
		ΔVΟ	O $T_J = +25 ^{\circ}\text{C}$ $-21 ^{\vee} \geq V_J \geq -33 ^{\vee}$	-	-	275	mV	
Load Regulation (No	oto1)	ΔVΩ	T,j = +25 °C	1.0mA ≤ I _O ≤ 100mA	-	-	170	mV
Load Regulation (NC	ne i)	ΔνΟ	1J = +25 C	1.0mA ≤ I _O ≤ 40mA	-	-	85	mV
Output Voltage		Vo	$-20.7V > V_I > -33V$, $1.0mA \le I_O \le 40mA$		-17.1	-	-18.9	V
Output Voltage		VO	V _I = -27V, 1.0mA ≤ I _O ≤ 70mA		-17.1	-	-18.9	V
Outcoant Current		lo.	T _J = +25°C		-	-	6.5	Λ
Quiescent Current		IQ	T _J = +125°C		-	-	6.0	mA
Quiescent Current	with line	ΔlQ	-21V ≥ V _I ≥ -33 ^v	V	-	-	1.5	mA
Change	with load	ΔlQ	1.0mA ≤ I _O ≤ 40mA		-	-	0.1	mA
Output Noise Voltage		VN	T _A =+25°C,10Hz ≤ f ≤ 100KHz		-	150	-	μV
Ripple Rejection		RR	$f = 120Hz, -23V \ge V_1 \ge -33V$ $T_J = +25^{\circ}C$		33	48	-	dB
Dropout Voltage		VD	TJ = +25°C		-	1.7	-	V

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics(MC79L24A)

(VI = -33V, IO = 40mA, CI = $0.33\mu F$, CO = $0.1\mu F$, $0^{\circ}C \le TJ \le +125^{\circ}C$, unless otherwise specified)


Paramete	r	Symbol	C	onditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = +25 °C		-23	-24	-25	V
Line Regulation (Not	te1)			-27V ≥ V _I ≥ -38V	-	-	350	mV
		ΔVΟ	T _J = +25 °C	-	-	300	mV	
Load Population (No	oto1)	4\/0	T,j = +25 °C	$1.0\text{mA} \le I_{O} \le 100\text{mA}$	-	-	200	mV
Load Regulation (Note1)		ΔVο	1J = +25 C	1.0mA ≤ I _O ≤ 40mA	-	-	100	mV
Output Voltage		Vo	$-27V \ge V_I \ge -38V$, $1.0mA \le I_O \le 40mA$		-22.8	-	-25.2	V
Output voltage		٧٥	V _I = -33V, 1.0mA≤ I _O ≤70mA		-22.8	-	-25.2	V
Quiescent Current		lo.	T _J = +25°C		-	-	6.5	mA
Quiescent Current		IQ -	T _J = +125°C		-	-	6.0	IIIA
Quiescent Current	with line	ΔlQ	-28V ≥V _I ≥ -38	V	-	-	1.5	mA
Change	with load	ΔlQ	1.0mA ≤ I _O ≤ 40mA		-	-	0.1	mA
Output Noise Voltage		VN	T _A = +25°C,10Hz ≤ f ≤ 100KHz		-	200	-	μV
Ripple Rejection		RR	$f = 120Hz, -29V \ge V_I \ge -35V$ $T_J = +25^{\circ}C$		31	47	-	dB
Dropout Voltage		VD	TJ = +25°C		-	1.7	-	V

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Application

Design Considerations

The MC79LXXA/LM79LXXA Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection that limits the maximum current the circuit will pass. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

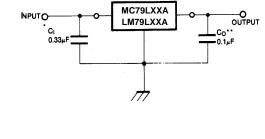
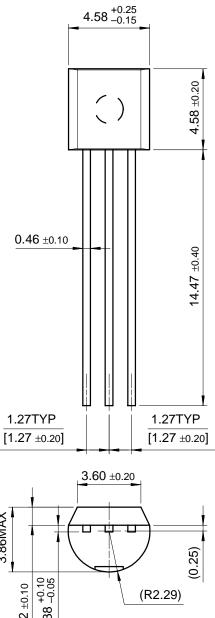
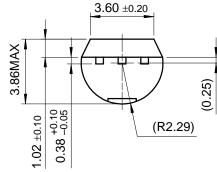


Figure 1. Positive And Negative Regulator

Figure 2. Typical Application

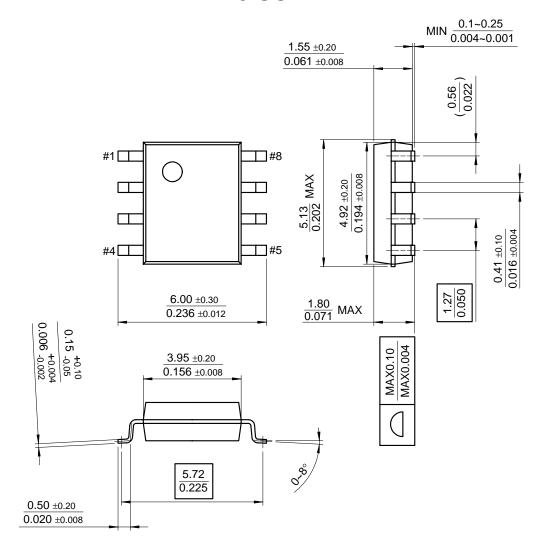

A common ground is required between the Input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.


- * C1 is required if regulator is located an appreciable distance from power supply filter.
- * Co improves stability and transient response.


Mechanical Dimensions

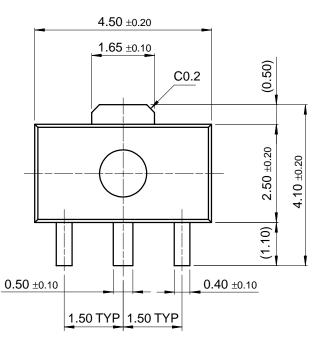
Package

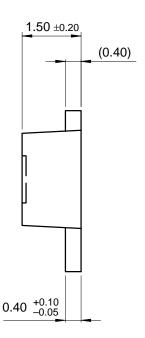
TO-92

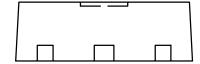


Mechanical Dimensions(Continued)

Package


8-SOP




Mechanical Dimensions (Continued)

Package

Ordering Information

Product Number	Package	Operating Temperature			
LM79L05ACZ	TO-92	0 ~ + 125 °C			
Product Number	Package	Operating Temperature			
MC79L05ACP					
MC79L08ACP					
MC79L12ACP	TO-92				
MC79L15ACP	10-92				
MC79L18ACP		0 ~ + 125 °C			
MC79L24ACP					
MC79L05ACD	8-SOP				
MC79L15ACD	0-30F				
MC79L05ACH	SOT-89				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com