

# DM74LS573

## Octal D Latch with 3-STATE Outputs

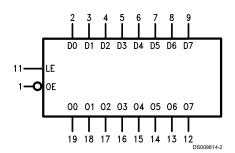
#### **General Description**

The 'LS573 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable  $(\overline{OE})$  inputs.

This device is functionally identical to the 'LS373, but has different pinouts. For truth tables, discussion of operations and AC and DC specifications, please refer to the 'LS373 data sheet.

#### **Features**

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'LS373
- Input clamp diodes limit high speed termination effects
- Fully TTL and CMOS compatible


#### **Connection Diagram**

#### Dual-In-Line Package



Order Number DM74LS573WM or DM74LS573N See Package Number M20B or N20A

#### **Logic Symbol**



 $V_{CC}$  = Pin 20 GND = Pin 10

| Pin Names | Description                              |  |  |
|-----------|------------------------------------------|--|--|
| D0-D7     | Data Inputs                              |  |  |
| LE        | Latch Enable Input (Active HIGH)         |  |  |
| ŌĒ        | 3-STATE Output Enable Input (Active LOW) |  |  |
| O0-O7     | 3-STATE Latch Outputs                    |  |  |

#### **Function Table**

| OUTPUT | Latch  | D | Output  |
|--------|--------|---|---------|
| Enable | Enable |   | ō       |
| L      | Н      | Н | Н       |
| L      | Н      | L | L       |
| L      | L      | Χ | $Q_{O}$ |
| н      | X      | Χ | Z       |

L = Low State, H = High State, X = Don't Care

Z = High Impedance State

Q<sub>O</sub> = Previous Condition of O

### **Absolute Maximum Ratings** (Note 1)

Supply Voltage 7V Input Voltage 7V

Operating Free Air Temperature Range DM74LS Storage Temperature Range

0°C to +70°C -65°C to +150°C

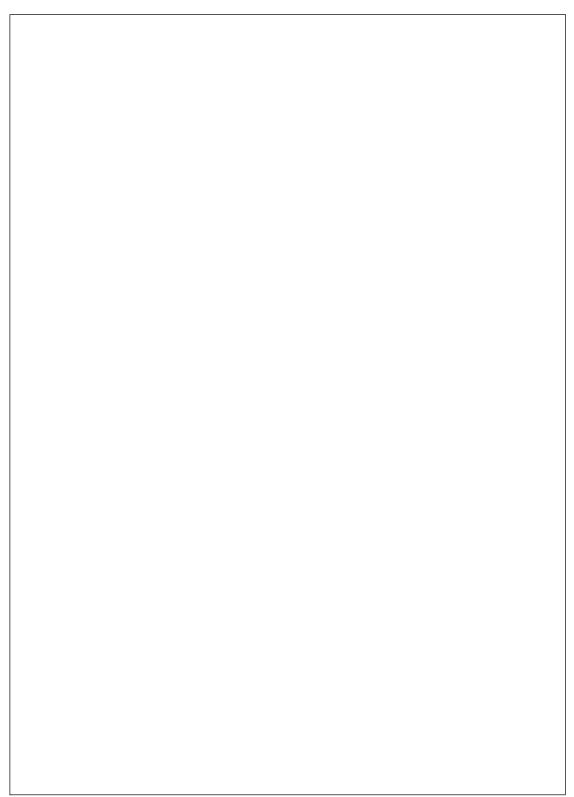
### **Recommended Operating Conditions**

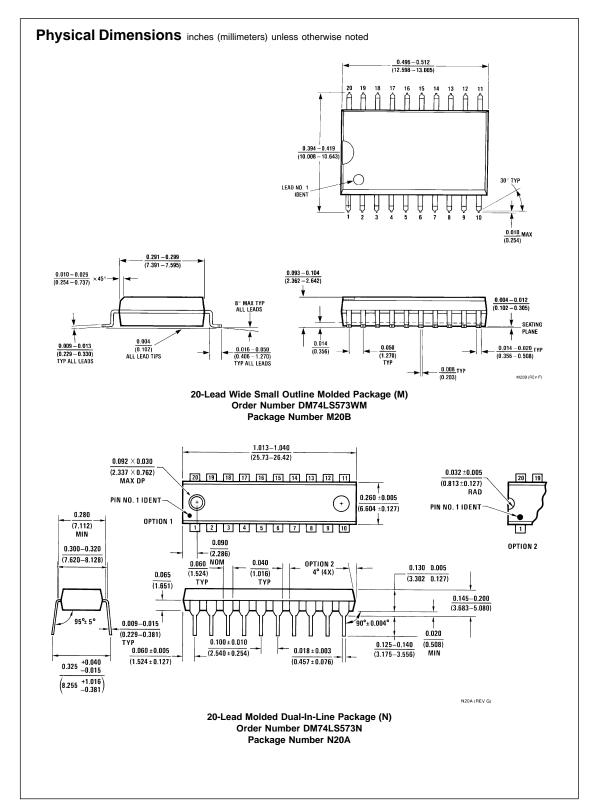
| Symbol          | Parameter                      | DM74LS |     |      | Units |
|-----------------|--------------------------------|--------|-----|------|-------|
|                 |                                | Min    | Nom | Max  | 1     |
| V <sub>cc</sub> | Supply Voltage                 | 4.75   | 5   | 5.25 | V     |
| V <sub>IH</sub> | High Level Input Voltage       | 2      |     |      | V     |
| V <sub>IL</sub> | Low Level Input Voltage        |        |     | 0.8  | V     |
| I <sub>OH</sub> | High Level Input Current       |        |     | -2.6 | mA    |
| I <sub>OL</sub> | Low Level Output Current       |        |     | 24   | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | 0      |     | 70   | °C    |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

#### **Electrical Characteristics**

Over recommended operating free air temperature range (unless otherwise noted)


| Symbol           | Parameter                | Conditions                                    | Min | Тур      | Max  | Units |
|------------------|--------------------------|-----------------------------------------------|-----|----------|------|-------|
|                  |                          |                                               |     | (Note 2) |      |       |
| V <sub>I</sub>   | Input Clamp Voltage      | $V_{CC}$ = Min, $I_{I}$ = -18 mA              |     |          | -1.5 | V     |
| V <sub>OH</sub>  | High Level Output        | V <sub>CC</sub> = Min, I <sub>OH</sub> = Max, | 2.7 | 3.4      |      | V     |
|                  | Voltage                  | V <sub>IL</sub> = Max                         |     |          |      |       |
| V <sub>OL</sub>  | Low Level Output         | V <sub>CC</sub> = Min, I <sub>OL</sub> = Max, |     | 0.35     | 0.5  |       |
|                  | Voltage                  | V <sub>IH</sub> = Min                         |     |          |      | V     |
|                  |                          | I <sub>OL</sub> = 4 mA, V <sub>CC</sub> = Min |     | 0.25     | 0.4  |       |
| I <sub>I</sub>   | Input Current @ Max      | V <sub>CC</sub> = Max, V <sub>I</sub> = 7V    |     |          | 1    | mA    |
|                  | Input Voltage            |                                               |     |          |      |       |
| I <sub>IH</sub>  | High Level Input Current | $V_{CC} = Max, V_I = 2.7V$                    |     |          | 20   | μA    |
| I <sub>IL</sub>  | Low Level Input Current  | $V_{CC} = Max, V_I = 0.4V$                    |     |          | -0.4 | mA    |
| I <sub>os</sub>  | Short Circuit            | V <sub>CC</sub> = Max                         | -30 |          | -130 | mA    |
|                  | Output Current           | (Note 3)                                      |     |          |      |       |
| I <sub>cc</sub>  | Supply Current           | V <sub>CC</sub> = Max                         |     |          | 50   | mA    |
| I <sub>OZH</sub> | 3-STATE Output           | V <sub>CC</sub> = V <sub>CCH</sub>            |     |          | 20   | μA    |
|                  | off Current High         | V <sub>OZH</sub> = 2.7V                       |     |          |      |       |
| I <sub>OZL</sub> | 3-STATE Output           | V <sub>CC</sub> = V <sub>CCH</sub>            |     |          | -20  | μA    |
|                  | off Current Low          | V <sub>OZL</sub> = 0.4V                       |     |          |      |       |


Note 2: All typicals are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at  $V_{CC}$  = 5V and  $T_A$  = 25°C (see Section 1 for Test Waveforms and output loading)

|                    |                       | R <sub>L</sub> : | $R_L = 2 k\Omega,$ $C_L = 50 pF$ |    |  |
|--------------------|-----------------------|------------------|----------------------------------|----|--|
| Symbol             | Parameter             | C <sub>L</sub> = |                                  |    |  |
|                    |                       | Min              | Max                              |    |  |
| t <sub>PLH</sub>   | Propagation Delay     |                  | 27                               | ns |  |
| t <sub>PHL</sub>   | Data to Q             |                  | 18                               |    |  |
| t <sub>PLH</sub>   | Propagation Delay     |                  | 36                               | ns |  |
| t <sub>PHL</sub>   | LE to Q               |                  | 25                               |    |  |
| t <sub>PZH</sub>   | 3-STATE Enable Time   |                  | 20                               | ns |  |
| t <sub>PZL</sub>   | OE to Q               |                  | 25                               |    |  |
| t <sub>PHZ</sub>   | 3-STATE Enable Time   |                  | 20                               | ns |  |
| $t_{PLZ}$          | OE to Q               |                  | 25                               |    |  |
| t <sub>s</sub> (H) | Setup Time (High/Low) | 3                |                                  | ns |  |
| $t_s(L)$           | Data to LE            | 7                |                                  |    |  |
| t <sub>h</sub> (H) | Hold Time (High/Low)  | 10               |                                  | ns |  |
| t <sub>h</sub> (L) | Data to LE            | 10               |                                  |    |  |
| t <sub>w</sub> (H) | Pulse Width (High)    | 15               |                                  | ns |  |
|                    | Data to LE            |                  |                                  |    |  |





#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas

Customer Response Center Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86

Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 8 141-35-0

English Tel: +44 (0) 1 793-85-68-56

Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179