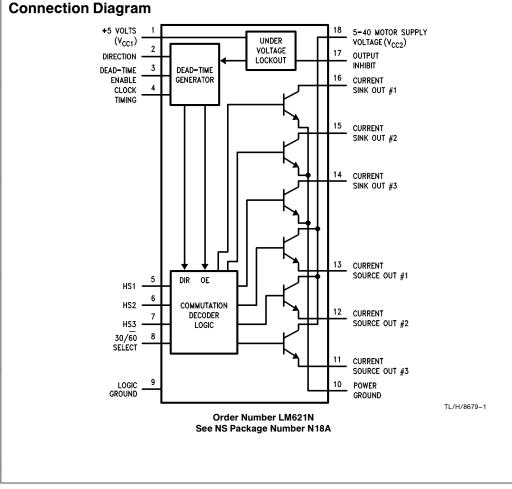
National Semiconductor

# LM621 Brushless Motor Commutator

## **General Description**


The LM621 is a bipolar IC designed for commutation of brushless DC motors. The part is compatible with both three- and four-phase motors. It can directly drive the power switching devices used to drive the motor. The LM621 provides an adjustable dead-time circuit to eliminate "shoot-through" current spiking in the power switching circuitry. Operation is from a 5V supply, but output swings of up to 40V are accommodated. The part is packaged in an 18-pin, dual-in-line package.

#### Features

- Adjustable dead-time feature eliminates current spiking
- On-chip clock oscillator for dead-time feature

- Outputs drive bipolar power devices (up to 35 mA base current) or MOSFET power devices
- Compatible with three- and four-phase motors ...
  Bipolar drive to delta- or Y-wound motors
  - Unipolar drive to center-tapped Y-wound motors
- Supports 30- and 60-degree shaft position sensor
- placements for three-phase motors — Supports 90-degree sensor placement for four-phase
- motors

  Directly interfaces to pulse-width modulator output(s)
  via OUTPUT INHIBIT (PWM magnitude) and DIREC-TION (PWM sign) inputs
- Direct interface to Hall sensors
- Outputs are current limited
- Undervoltage lockout



RRD-B30M115/Printed in U. S. A.

August 1992

# Absolute Maximum Ratings (See Notes)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| V <sub>CC1</sub>          | +7V                        |
|---------------------------|----------------------------|
| V <sub>CC2</sub>          | + 45V                      |
| Logic Inputs (Note 1)     | $V_{CC1}$ +0.5V, -0.5V     |
| Logic Input Clamp Current | 20 mA                      |
| Output Voltages           | +45V, -0.5V                |
| Output Currents           | Internally current limited |

| Operating Ambient Temperature Range<br>LM621    | -40°C to +85°C  |
|-------------------------------------------------|-----------------|
| Storage Temperature Range                       | -65°C to +150°C |
| Junction Temperature                            | 150°C           |
| ESD Susceptibility (Note 10)                    | 2000V           |
| Lead Temperature, N pkg.<br>(Soldering, 4 sec.) | 260°C           |

# Electrical Characteristics (See Notes)

| Parameter                                                                             | Conditions                                                                                                                     | Тур                                | Tested<br>Limits     | Design<br>Limits      | Units                              |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|-----------------------|------------------------------------|
| DECODER SECTION                                                                       |                                                                                                                                |                                    |                      |                       |                                    |
| High Level Input Voltage<br>HS1, HS2, HS3:<br>30/60 SELECT:                           |                                                                                                                                |                                    | 2.0<br>2.0           | 2.0<br>2.0            | V min<br>V min                     |
| High Level Input Current<br>HS1, HS2, HS3:<br>30/60 SELECT:                           | $\begin{array}{l} V_{IH} = V_{CC1} \\ V_{IH} = V_{CC1} \end{array}$                                                            |                                    | 100<br>120           | 200<br>240            | μA max<br>μA max                   |
| Low Level Input Voltage<br>HS1, HS3 and HS2<br>HS1, HS3 and HS2<br>30/60 Select       | $30/\overline{60} = 5V$<br>$30/\overline{60} = 0V$<br>$H_{SI} = H_{S3} = 5V$                                                   |                                    | 0.6<br>0.6<br>0.6    | 0.4<br>0.4<br>0.4     | V max<br>V max<br>V <sub>max</sub> |
| Low Level Input Current<br>HS1 and HS3:<br>HS2:<br>30/60 SELECT                       | $\begin{array}{l} V_{IL}=0.35V\\ V_{IL}=0.4V\\ V_{IL}=0.0V \end{array}$                                                        |                                    | -400<br>-100<br>-700 | -600<br>-200<br>-1000 | μΑ max<br>μΑ max<br>μΑ max         |
| Input Clamp Voltage<br>(Pins 2, 3, 5, 6, 7, 8, 17)                                    | $I_{in} = 1 \text{ mA}$<br>$I_{in} = -1 \text{ mA}$                                                                            | (V <sub>CC1</sub> + 0.7)<br>(-0.6) |                      |                       | V<br>V                             |
| Output Leakage Current<br>Sinking Outputs                                             | $\begin{array}{l} \text{Outputs Off} \\ \text{V}_{\text{CC2}} = 40\text{V}, \\ \text{V}_{\text{OUT}} = 40\text{V} \end{array}$ | 0.2                                |                      | 1.0                   | μΑ                                 |
| Sourcing Outputs                                                                      | $V_{OUT} = 0V$                                                                                                                 | -0.2                               |                      | -1.0                  | μΑ                                 |
| Short-Circuit Current<br>Sinking Outputs<br>Sourcing Outputs                          | $V_{CC2} = 10V,$<br>$V_{OUT} = 10V$<br>$V_{OUT} = 0V$                                                                          | 50<br>50                           | 35<br>35             |                       | mA min<br>mA min                   |
| $V_{sat}$ (sinking)<br>$V_{drop}$ (sourcing) = (V <sub>CC2</sub> - V <sub>OUT</sub> ) | I = 20  mA $I = -20  mA$                                                                                                       | 0.83                               |                      | 1.00<br>2.00          | V max<br>V max                     |
| Output Rise Time                                                                      | (sourcing)<br>C <sub>L</sub> < 10 pF                                                                                           | 50                                 |                      |                       | ns                                 |
| Output Fall Time                                                                      | (sinking) $C_L \leq 10 \text{ pF}$                                                                                             | 50                                 |                      |                       | ns                                 |
| Propagation Delay<br>(Hall Input to Output)                                           | Dead-Time Off                                                                                                                  | 200                                |                      |                       | ns                                 |

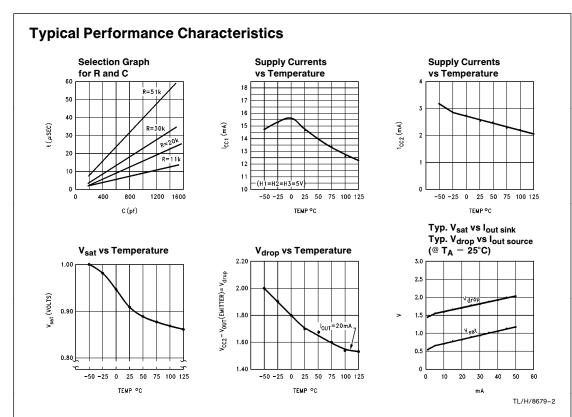
| Parameter                                                                                                                                                                                              | Conditions                                                                                      | Тур                               | Tested<br>Limits                | Design<br>Limits        | Units                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|-------------------------|--------------------------------------|
| DEAD-TIME SECTION                                                                                                                                                                                      |                                                                                                 |                                   |                                 |                         |                                      |
| High Level Input Voltage<br>DIRECTION:<br>OUTPUT INHIBIT:<br>DEAD-TIME ENABLE:                                                                                                                         | Pin 3 = 0V<br>Pin 17 = 0V                                                                       |                                   | 2.0<br>2.0<br>2.0               | 2.0<br>2.0<br>2.0       | V min<br>V min<br>V min              |
| High Level Input Current<br>DIRECTION:<br>OUTPUT INHIBIT:<br>DEAD-TIME ENABLE:                                                                                                                         | V <sub>in</sub> = 5V<br>Pin 3 = 0V                                                              |                                   | 100<br>60<br>200                | 150<br>100<br>300       | μΑ max<br>μΑ max<br>μΑ max           |
| Low Level Input Voltage<br>DIRECTION:<br>OUTPUT INHIBIT:<br>DEAD-TIME ENABLE:                                                                                                                          | Pin <b>3</b> =0V                                                                                |                                   | 0.6<br>0.6<br>0.3               | 0.4<br>0.4<br>0.2       | V max<br>V max<br>V max              |
| Low Level Input Current<br>DIRECTION:<br>OUTPUT INHIBIT:<br>DEAD-TIME ENABLE:                                                                                                                          | $V_{in} = 0.6V$<br>$V_{in} = 0.6V$<br>$V_{in} = 0V$                                             |                                   | 100<br>60<br>200                | - 150<br>- 100<br>- 300 | μΑ max<br>μΑ max<br>μΑ max           |
| Propagation Delays<br>(Inputs to Outputs)<br>OUTPUT INHIBIT<br>DIRECTION                                                                                                                               | Dead-Time Off,<br>(Pin 3 $=$ 0V)                                                                | 200<br>200                        |                                 |                         | ns<br>ns                             |
| Minimum Clock Period,<br>T <sub>CLK</sub> (Notes 3, 11)                                                                                                                                                | $\begin{split} R &= 11 \ k\Omega,  R_1 = 1 k \\ C &= 200 \ pF \end{split}$                      | 1.8                               |                                 |                         | μs                                   |
| Clock Accuracy $f = 100 \text{ kHz}$ (Note 11)                                                                                                                                                         | $R = 30k, R_1 = 1k$<br>C = 420 pF                                                               | ±3                                |                                 |                         | %                                    |
| Minimum Dead-Time<br>Minimum Dead-Time                                                                                                                                                                 | Dead-Time Off<br>Dead-Time On                                                                   | 15<br>2                           |                                 |                         | ns<br>T <sub>CLK</sub>               |
| COMPLETE CIRCUIT                                                                                                                                                                                       |                                                                                                 |                                   |                                 |                         |                                      |
| Total Current Drains<br>I <sub>CC1</sub><br>I <sub>CC1</sub><br>I <sub>CC2</sub><br>I <sub>CC2</sub>                                                                                                   | Outputs Off $V_{CC2} = 40V$                                                                     | 15                                | 10<br>22<br>2<br>6              | 30                      | mA min<br>mA max<br>mA min<br>mA max |
| Undervoltage Lockout                                                                                                                                                                                   |                                                                                                 | 3.6                               | 3.0                             |                         | V <sub>MAX</sub>                     |
| • CC1<br>iote 1. Unless otherwise noted ambien<br>ote 2. Unless otherwise noted: V <sub>CC1</sub> =<br>ote 3. The clock period is typically T <sub>c</sub><br>haracteristics for determining values of | = +5.0V, "recommended operating rates $C_{LK}$ = (0.756 $	imes$ 10 <sup>-3</sup> ) (R + 1) C, w | here T <sub>CLK</sub> is in $\mu$ | s, R is in $k\Omega$ , and C is | s pF. Also see selecti  |                                      |

Note 6. Specifications in **boldface** apply over junction temperature range of  $-40^{\circ}$ C to  $+85^{\circ}$ C.

Note 7. Typical Thermal Resistances O<sub>JA</sub> (see Note 8):

110°C/W

N pkg, board mounted


118°C/W N pkg, socketed

Note 8. Package thermal resistance indicates the ability of the package to dissipate heat generated on the die. Given ambient temperature and power dissipation, the thermal resistance and reliability.

Note 9. This part specifically does not have thermal shutdown protection to avoid safety problems related to an unintentional restart due to thermal time constant variations. Care should be taken to prevent excessive power dissipation on the die.

Note 10: Human body model, 100 pF, discharged through a 1500  $\!\Omega$  resistor.

Note 11:  $R_1\,=\,0$  for  $C\,\geq\,620$  pF.



# **Description of Inputs and Outputs**

**Pin 1:** V<sub>CC1</sub> (+5V). The logic and clock power supply pin. **Pin 2: DIRECTION.** This input determines the direction of rotation of the motor; ie., clockwise vs. counterclockwise. See truth table.

**Pin 3: DEAD-TIME ENABLE.** This input enables or disables the dead-time feature. Connecting +5V to pin 3 enables dead-time, and grounding pin 3 disables it. Pin 3 should not be allowed to float.

**Pin 4: CLOCK TIMING.** An RC network connected between this pin and ground sets the period of the clock oscillator, which determines the amount of dead-time. See *Figure 2* and text.

**Pins 5 thru 7: HS1, HS2, and HS3 (Hall-sensor inputs).** These inputs receive the rotor-position sensor inputs from the motor. Three-phase motors provide all three signals; four phase motors provide only two, one of which is connected to both HS2 and HS3.

**Pin 8: 30/60 SELECT.** This input is used to select the required decoding for three-phase motors; ie, either "30-degree" (+5V) or "60-degree" (ground). Connect pin 8 to +5V when using a four-phase motor.

Pin 9: LOGIC GROUND. Ground for the logic power supply.

Pin 10: POWER GROUND. Ground for the output buffer supply.

**Pins 11 thru 13: SOURCE OUTPUTS.** The three currentsourcing outputs which drive the external power devices that drive the motor.

Pins 14 thru 16: SINK OUTPUTS. The three current-sinking outputs which drive the external power devices that drive the motor.

**Pin 17: OUTPUT INHIBIT.** This input disables the LM621 outputs. It is typically driven by the magnitude signal from an external sign/magnitude PWM generator. Pin 17 = +5V = outputs off.

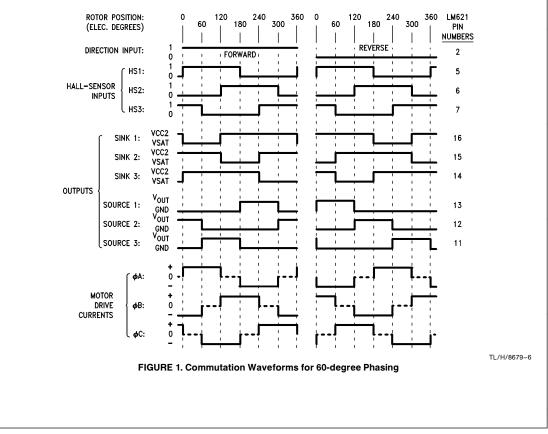
**Pin 18:** V<sub>CC2</sub> (+5 to +40V). This is the supply for the collectors of the three current-sourcing outputs (pins 11 thru 13). When driving MOSFET power devices, pin 18 may be connected to a voltage source of up to +40V to achieve sufficient output swing for the gate. When driving bipolar power devices, pin 18 should be connected to +5V to minimize on-chip power dissipation. Undervoltage lockout automatically shuts down all outputs if the V<sub>CC1</sub> supply is too low. All outputs will be off if V<sub>CC1</sub> falls below the undervoltage lockout voltage.

## **Functional Description**

The commutation decoder receives Hall-sensor inputs HS1, HS2, and HS3 and a  $30/\overline{60}$  SELECT input. This block decodes the gray-code sequence to the required motor-drive sequence.

The dead-time generator monitors the DIRECTION input and inhibits the outputs (pins 11 thru 16) for a time sufficient to prevent current-spiking in the external power switches when the direction is reversed.

The six chip outputs drive external power switching devices which drive the motor. Three outputs source current; the remaining three sink current. The output transistors provide up to 50 mA outputs for driving devices, or up to 40V output swings for driving MOSFETs. The LM621 logic is powered from 5V.


The undervoltage lockout section monitors the  $V_{CC}$  supply and if the voltage is not sufficient to permit reliable logic operation, the outputs are shutdown.

### **Three-Phase Motor Commutation**

There are two popular conventions for establishing the relative phasing of rotor-position signals for three-phase motors. While usually referred to as 30-degree and 60-degree sensor placements, this terminology refers to mechanical degrees of sensor placement, not electrical degrees. The electrical angular resolution is the required 60 degrees in both cases. The phasing differences can be noted by comparing the sequences of HS1 through HS3 entries in Table I, LM621 Commutation Decoder Truth Table, which shows both the 30- and 60-degree phasings (and the 90-degree phasing for four-phase motors) and their required decoder logic truth tables, respectively. Table I shows the phasing (or codes) of the Hall-effect sensors for each 60-degree (electrical) position range of the rotor, and correlates these data to the commutator sink and source outputs required to drive the power switches. These phasings are common to several motor manufacturers. The 60-degree phasing is preferred to 30-degree phasing because the all-zeros and allones codes are not generated. The 60-degree phasing is more failsafe because the all-zeros and all-ones codes could be inadvertently generated by things like disconnected or shorted sensors.

Because the above terminology is not used consistently among all motor manufacturers, Table II, Alternative Sensor-phasing Names, will hopefully clarify some of the differences. Table II shows a different 60-degree phasing, and 120-, 240-, and 300-degree phasings. Comparison with Table I will show that these four phasings are essentially shifted and/or reversed-order versions of those used with the LM621.

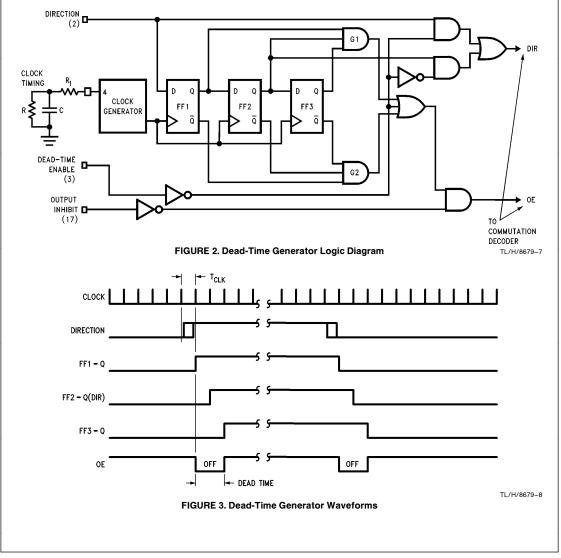
*Figure 1* shows the waveforms associated with the commutation decoder logic for a motor which has 60-degree rotorposition phasing, along with the generated motor-drive waveforms. As can be seen in the drawing, Hall-effect sensor signals HS1 through HS3 are separated by 60 electrical degrees, which is the required angular resolution for threephase motors.



|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAB                                                                                                                                                                                                                                                                                                                                    | LE I. LN                                                                                                                                                                                                                                          | 1621 Comn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nutation D                                                                                                                                                                                                                                                                                                                                                    | ecodei                               |                                                                                                                                                                     | able                                                                                                                                                                                                     |                                                                                                                                                                                               |                                                                                                                                                              |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Sensor                                                                                                                                              | Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sensor Inputs                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               | Sink Outputs                         |                                                                                                                                                                     |                                                                                                                                                                                                          | So                                                                                                                                                                                            | urce Outp                                                                                                                                                    | uts                                   |
| Phasing                                                                                                                                             | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HS1                                                                                                                                                                                                                                                                                                                                    | HS                                                                                                                                                                                                                                                | 2 HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 1                                                                                                                                                                                                                                                                                                                                                           | I                                    | 2                                                                                                                                                                   | 3                                                                                                                                                                                                        | 1                                                                                                                                                                                             | 2                                                                                                                                                            | :                                     |
|                                                                                                                                                     | 0-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | N                                    | off                                                                                                                                                                 | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | ON                                                                                                                                                           | 0                                     |
|                                                                                                                                                     | 60-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | N                                    | off                                                                                                                                                                 | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | off                                                                                                                                                          | 0                                     |
| 30 deg                                                                                                                                              | 120-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | ON                                                                                                                                                                  | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | off                                                                                                                                                          | 0                                     |
|                                                                                                                                                     | 180-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | ON                                                                                                                                                                  | off                                                                                                                                                                                                      | ON                                                                                                                                                                                            | off                                                                                                                                                          | 0                                     |
|                                                                                                                                                     | 240-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | off                                                                                                                                                                 | ON                                                                                                                                                                                                       | ON                                                                                                                                                                                            | off                                                                                                                                                          | c                                     |
|                                                                                                                                                     | 300-360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | off                                                                                                                                                                 | ON                                                                                                                                                                                                       | off                                                                                                                                                                                           | ON                                                                                                                                                           | 0                                     |
|                                                                                                                                                     | 0-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | N                                    | off                                                                                                                                                                 | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | ON                                                                                                                                                           | c                                     |
| 60 deg                                                                                                                                              | 60-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | N                                    | off                                                                                                                                                                 | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | off                                                                                                                                                          | C                                     |
|                                                                                                                                                     | 120–180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | ON                                                                                                                                                                  | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | off                                                                                                                                                          | 0                                     |
|                                                                                                                                                     | 180-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | ON                                                                                                                                                                  | off                                                                                                                                                                                                      | ON                                                                                                                                                                                            | off                                                                                                                                                          | 0                                     |
|                                                                                                                                                     | 240-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | off                                                                                                                                                                 | ON                                                                                                                                                                                                       | ON                                                                                                                                                                                            | off                                                                                                                                                          | 0                                     |
|                                                                                                                                                     | 300-360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                             | ff                                   | off                                                                                                                                                                 | ON                                                                                                                                                                                                       | off                                                                                                                                                                                           | ON                                                                                                                                                           | c                                     |
|                                                                                                                                                     | 0-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 o                                                                                                                                                                                                                                                                                                                                                           | ff                                   | na                                                                                                                                                                  | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | na                                                                                                                                                           | 0                                     |
| 90 deg                                                                                                                                              | 90-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 0                                                                                                                                                                                                                                                                                                                                                           | N                                    | na                                                                                                                                                                  | off                                                                                                                                                                                                      | off                                                                                                                                                                                           | na                                                                                                                                                           | 0                                     |
|                                                                                                                                                     | 180-270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                 | HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 o                                                                                                                                                                                                                                                                                                                                                           | ff                                   | na                                                                                                                                                                  | ON                                                                                                                                                                                                       | off                                                                                                                                                                                           | na                                                                                                                                                           | 0                                     |
|                                                                                                                                                     | 270-360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                 | HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 0                                                                                                                                                                                                                                                                                                                                                           | ff                                   | na                                                                                                                                                                  | off                                                                                                                                                                                                      | ON                                                                                                                                                                                            | na                                                                                                                                                           | c                                     |
| Pin Numbers                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                             | 6                                    | 15                                                                                                                                                                  | 14                                                                                                                                                                                                       | 13                                                                                                                                                                                            | 12                                                                                                                                                           | 1                                     |
| states become ex<br>Note 2: For four-                                                                                                               | ve outputs are gener<br>xchanged.<br>phase motors sink a<br>hows how the requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd source out<br>ed sink and s                                                                                                                                                                                                                                                                                                         | puts numb<br>ource outp                                                                                                                                                                                                                           | per two (pins <sup>-</sup><br>buts for four-pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s logic high. I<br>5 and 12) are<br>hase motors a                                                                                                                                                                                                                                                                                                             | For rever<br>e not use<br>are derive | rse rotation<br>ed; hense th<br>ed.                                                                                                                                 | (pin 2 logic lo<br>ne "na" (not a                                                                                                                                                                        | w), the above                                                                                                                                                                                 | sink and sou                                                                                                                                                 | rce ou                                |
| states become ex<br>Note 2: For four-                                                                                                               | xchanged.<br>phase motors sink a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd source out<br>ed sink and s                                                                                                                                                                                                                                                                                                         | puts numb<br>ource outp<br>ABLE I                                                                                                                                                                                                                 | ber two (pins <sup>-</sup><br>bouts for four-pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s logic high. I<br>15 and 12) ard<br>nase motors a<br>ve Sensor                                                                                                                                                                                                                                                                                               | For rever<br>e not use<br>are derive | se rotation<br>ed; hense th<br>ed.<br>ng Name:                                                                                                                      | (pin 2 logic lo<br>ne "na" (not a                                                                                                                                                                        | w), the above                                                                                                                                                                                 | he appropriat                                                                                                                                                | rce out                               |
| states become en<br>Note 2: For four-<br>above. <i>Figure 6</i> s                                                                                   | xchanged.<br>phase motors sink a<br>shows how the requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd source out<br>ed sink and s                                                                                                                                                                                                                                                                                                         | puts numb<br>ource outp<br>ABLE II<br>Se                                                                                                                                                                                                          | per two (pins <sup>-</sup><br>buts for four-pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s logic high. I<br>15 and 12) ard<br>nase motors a<br>ve Sensor                                                                                                                                                                                                                                                                                               | For rever<br>e not use<br>are derive | se rotation<br>ed; hense th<br>ed.<br>ng Name:                                                                                                                      | (pin 2 logic lo<br>ne "na" (not a<br>S<br>Correspond                                                                                                                                                     | w), the above                                                                                                                                                                                 | he appropriat                                                                                                                                                | rce out                               |
| states become ex<br>Note 2: For four-<br>above. <i>Figure 6</i> s                                                                                   | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd source out<br>ed sink and s<br>T<br>HS                                                                                                                                                                                                                                                                                              | puts numb<br>ource outp<br>ABLE II<br>Se<br>51                                                                                                                                                                                                    | input, pin 2, i<br>per two (pins -<br>puts for four-pi<br>I. Alternation<br>Insor Input<br>HS2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s logic high. I<br>5 and 12) are<br>nase motors a<br>ve Sensor<br>s<br>HS3<br>0                                                                                                                                                                                                                                                                               | For rever                            | rse rotation<br>ed; hense tr<br>ed.<br>ng Name<br>C<br>Same as                                                                                                      | (pin 2 logic lo<br>e "na" (not a<br>s<br>correspond<br>Range al<br>30-degree                                                                                                                             | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b                                                                                                                      | sink and sou<br>he appropriat<br><b>1 Position</b><br>iments<br>ut in revers                                                                                 | e colun                               |
| Alternate<br>Phasing                                                                                                                                | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd source oul<br>ed sink and s<br>T<br>HS<br>C<br>1                                                                                                                                                                                                                                                                                    | puts numb<br>ource outp<br>ABLE II<br>Se<br>51                                                                                                                                                                                                    | i input, pin 2, i<br>poer two (pins -<br>puts for four-pl<br>I. Alternation<br>I. Alternation                                     | s logic high. I<br>5 and 12) ard<br>nase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0                                                                                                                                                                                                                                                                          | For rever                            | rse rotation<br>ed; hense tr<br>ed.<br>ng Name<br>C<br>Same as                                                                                                      | (pin 2 logic lo<br>ne "na" (not a<br>s<br>correspond<br>Range al                                                                                                                                         | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b                                                                                                                      | sink and sou<br>he appropriat<br><b>1 Position</b><br>iments<br>ut in revers                                                                                 | e colun                               |
| states become ex<br>Note 2: For four-<br>above. <i>Figure 6</i> s                                                                                   | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd source oul<br>ed sink and s<br>T<br>HS<br>C<br>1<br>1                                                                                                                                                                                                                                                                               | puts numb<br>ource outp<br>ABLE II<br>Se<br>51                                                                                                                                                                                                    | i input, pin 2, i<br>poer two (pins -<br>puts for four-pl<br>I. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s logic high. I<br>15 and 12) are<br>hase motors a<br>ve Sensor-<br>s<br>HS3<br>0<br>0<br>0                                                                                                                                                                                                                                                                   | For rever                            | rse rotation<br>ed; hense tr<br>ed.<br>ng Name<br>C<br>Same as                                                                                                      | (pin 2 logic lo<br>e "na" (not a<br>s<br>correspond<br>Range al<br>30-degree                                                                                                                             | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b                                                                                                                      | sink and sou<br>he appropriat<br><b>1 Position</b><br>iments<br>ut in revers                                                                                 | e colun                               |
| Alternate<br>Phasing                                                                                                                                | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd source oul<br>ed sink and s<br>T<br>HS<br>C<br>1                                                                                                                                                                                                                                                                                    | puts numb<br>ource outp<br>ABLE II<br>Se<br>51                                                                                                                                                                                                    | i input, pin 2, i<br>poer two (pins -<br>puts for four-pl<br>I. Alternation<br>I. Alternation                                     | s logic high. I<br>5 and 12) ard<br>nase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0                                                                                                                                                                                                                                                                          | For rever                            | rse rotation<br>ed; hense tr<br>ed.<br>ng Name<br>C<br>Same as                                                                                                      | (pin 2 logic lo<br>e "na" (not a<br>s<br>correspond<br>Range al<br>30-degree                                                                                                                             | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b                                                                                                                      | sink and sou<br>he appropriat<br><b>1 Position</b><br>iments<br>ut in revers                                                                                 | e colun                               |
| Alternate<br>Phasing                                                                                                                                | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd source out<br>ed sink and s<br>T<br>HS<br>C<br>1<br>1<br>1                                                                                                                                                                                                                                                                          | puts numb<br>ource outp<br>CABLE II<br>Se<br>S1                                                                                                                                                                                                   | n input, pin 2, i<br>per two (pins 1<br>outs for four-pi<br>I. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s logic high. I<br>5 and 12) ard<br>hase motors a<br>ve Sensor-<br>s<br>HS3<br>0<br>0<br>0<br>0<br>1                                                                                                                                                                                                                                                          | For rever                            | rse rotation<br>ed; hense tr<br>ed.<br>ng Name<br>C<br>Same as                                                                                                      | (pin 2 logic lo<br>e "na" (not a<br>s<br>correspond<br>Range al<br>30-degree                                                                                                                             | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b                                                                                                                      | sink and sou<br>he appropriat<br><b>1 Position</b><br>iments<br>ut in revers                                                                                 | e colun                               |
| Alternate<br>Phasing                                                                                                                                | Position        Range        0-60        120-180        180-240        240-300        300-360        0-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd source out<br>ed sink and s<br>T<br>HS<br>C<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                   | puts numb    puts numb    CABLE II    Se    S1    )    )    )    )                                                                                                                                                                                | n input, pin 2, i<br>per two (pins -<br>puts for four-pl<br>I. Alternativ<br>I. Alte       | s logic high. I<br>5 and 12) and<br>hase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                       | For rever                            | se rotation<br>ad; hense tr<br>ad.<br><b>ng Name:</b><br><b>C</b><br>Same as<br>order; i.e                                                                          | (pin 2 logic lo<br>e "na" (not a<br>s<br>correspond<br>Range al<br>30-degree                                                                                                                             | hing LM62<br>hing LM62<br>hd/or Com<br>phasing, b<br>ge is relativ                                                                                                                            | he appropriat<br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior                                                                         | e colun<br>e colun                    |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"                           | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd source out<br>ed sink and s<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | ABLE II                                                                                                                                                                                                                                           | n input, pin 2, i<br>per two (pins -<br>pouts for four-pl<br>i. Alternati-<br>msor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s logic high. I<br>5 and 12) arr<br>nase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                       | For rever                            | se rotation<br>ad; hense tr<br>ad.<br><b>ng Name:</b><br><b>C</b><br>Same as<br>order; i.e<br>Same as<br>order of p                                                 | (pin 2 logic lo<br>ne "na" (not a<br>scorrespond<br>Range an<br>30-degree<br>., only char<br>60-degree<br>position ran                                                                                   | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b<br>ige is relativ<br>phasing, b<br>iges; i.e., of                                                                    | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change                     | e colun<br>e colun<br>e<br>e<br>1.    |
| Alternate<br>Phasing                                                                                                                                | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd source out<br>ed sink and s<br>T<br>HS<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                    | puts numb    puts numb    GABLE II    Se    S1    )    )    )                                                                                                                                                                                     | n input, pin 2, i<br>per two (pins -<br>pouts for four-pl<br>. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s logic high. I<br>5 and 12) are<br>nase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0                                                                                                                                                                                                                             | For rever                            | se rotation<br>ad; hense tr<br>ad.<br><b>ng Name:</b><br><b>C</b><br>Same as<br>order; i.e<br>Same as<br>order of p                                                 | (pin 2 logic lo<br>ne "na" (not a<br>sorrespond<br>Range an<br>30-degree<br>., only char<br>60-degree                                                                                                    | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b<br>ige is relativ<br>phasing, b<br>iges; i.e., of                                                                    | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change                     | e colun<br>e colun<br>e<br>e<br>1.    |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"                           | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>120-180<br>180-240<br>180-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd source out<br>ed sink and s<br>T<br>HS<br>C<br>C<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                          | (ABLE II)                                                                                                                                                                                                                                         | n input, pin 2, i<br>per two (pins -<br>puts for four-pi<br>is four-pi<br>is for four-pi<br>is four | s logic high. I<br>5 and 12) ard<br>hase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0                                                                                                                                                                 | For rever                            | se rotation<br>ad; hense tr<br>ad.<br><b>ng Name:</b><br><b>C</b><br>Same as<br>order; i.e<br>Same as<br>order of p                                                 | (pin 2 logic lo<br>ne "na" (not a<br>scorrespond<br>Range an<br>30-degree<br>., only char<br>60-degree<br>position ran                                                                                   | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b<br>ige is relativ<br>phasing, b<br>iges; i.e., of                                                                    | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change                     | e colun<br>e colun<br>e<br>n.         |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"                           | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd source out<br>ed sink and s<br>T<br>HS<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                    | Puts numt<br>CABLE II<br>Se<br>S1                                                                                                                                                                                                                 | n input, pin 2, i<br>per two (pins -<br>pouts for four-pl<br>. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s logic high. I<br>5 and 12) are<br>nase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0                                                                                                                                                                                                                             | For rever                            | se rotation<br>ad; hense tr<br>ad.<br><b>ng Name:</b><br><b>C</b><br>Same as<br>order; i.e<br>Same as<br>order of p                                                 | (pin 2 logic lo<br>ne "na" (not a<br>scorrespond<br>Range an<br>30-degree<br>., only char<br>60-degree<br>position ran                                                                                   | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b<br>ige is relativ<br>phasing, b<br>iges; i.e., of                                                                    | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change                     | e colun<br>e colun<br>e<br>e<br>1.    |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"                           | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0–60<br>60–120<br>120–180<br>180–240<br>240–300<br>300–360<br>0–60<br>60–120<br>120–180<br>180–240<br>240–300<br>240–300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd source out<br>ed sink and s<br>T<br>HS<br>C<br>C<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | puts numt<br>ource outp<br>TABLE II<br>Se<br>S1<br>)<br>)<br>)                                                                                                                                                                                    | n input, pin 2, i<br>per two (pins -<br>puts for four-pi<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s logic high. I<br>5 and 12) and<br>hase motors a<br>ve Sensor-<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                     | For rever                            | se rotation<br>ad; hense tr<br>ad.<br><b>ng Name:</b><br><b>C</b><br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p                                   | (pin 2 logic lo<br>ne "na" (not a<br>scorrespond<br>Range an<br>30-degree<br>., only char<br>60-degree<br>position ran                                                                                   | w), the above<br>pplicable) in t<br>ing LM62<br>nd/or Com<br>phasing, b<br>ge is relativ<br>phasing, b<br>ges; i.e., or<br>ensor signa                                                        | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change<br>als.             | e colun<br>e colun<br>e<br>n.         |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"<br>"120 deg"              | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>300-360<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>180-240<br>0-60<br>60-120<br>180-240<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-60<br>60-120<br>180-240<br>0-300<br>0-60<br>60-120<br>120-180<br>180-240<br>0-60<br>60-120<br>120-300<br>0-60<br>60-120<br>120-300<br>0-60<br>60-120<br>120-300<br>0-60<br>0-60<br>60-120<br>120-300<br>0-60<br>0-120<br>120-300<br>0-60<br>0-120<br>120-180<br>180-240<br>0-60<br>0-120<br>120-180<br>180-240<br>0-60<br>0-120<br>120-180<br>180-240<br>0-00<br>0-60<br>0-120<br>180-240<br>0-300<br>0-60<br>0-120<br>180-240<br>0-300<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-00<br>0-0 | nd source out<br>ed sink and s<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | puts numb<br>ource outp<br>CABLE II<br>Se<br>51<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                                           | n input, pin 2, i<br>per two (pins -<br>pouts for four-pl<br>i. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s logic high. I<br>5 and 12) arr<br>hase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | For rever                            | se rotation<br>ad; hense tr<br>ad.<br><b>ng Name:</b><br><b>C</b><br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p                                   | (pin 2 logic lo<br>re "na" (not a<br>sorrespond<br>Range al<br>30-degree<br>., only char<br>60-degree<br>position ran<br>hasing of s                                                                     | w), the above<br>pplicable) in t<br>ing LM62<br>nd/or Com<br>phasing, b<br>ge is relativ<br>phasing, b<br>ges; i.e., or<br>ensor signa                                                        | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change<br>als.             | e colun<br>e colun<br>e<br>n.         |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"                           | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-8                                                                                                                                   | nd source out<br>ed sink and s<br>7<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | (ABLE II)                                                                                                                                                                                                                                         | n input, pin 2, i<br>per two (pins -<br>pouts for four-pi<br><b>I. Alternativ</b><br><b>nsor Input</b><br><b>HS2</b><br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s logic high. I<br>5 and 12) are<br>asse motors a<br>ve Sensor<br>S<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | For rever                            | se rotation<br>ad; hense th<br>ad.<br>ng Name:<br>C<br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p<br>Same co                                      | (pin 2 logic lo<br>re "na" (not a<br>sorrespond<br>Range al<br>30-degree<br>., only char<br>60-degree<br>position ran<br>hasing of s                                                                     | w), the above<br>pplicable) in t<br>ing LM62<br>nd/or Com<br>phasing, b<br>ge is relativ<br>phasing, b<br>ges; i.e., or<br>ensor signa                                                        | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change<br>als.             | e colun<br>e colun<br>e<br>e<br>1.    |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"<br>"120 deg"              | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>180-240<br>180-240<br>180-240<br>180-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd source out<br>ed sink and s<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | puts numt<br>ource outp<br>7ABLE II<br>Se<br>51<br>)<br>)<br>)<br>)<br>)                                                                                                                                                                          | n input, pin 2, i<br>per two (pins -<br>puts for four-pi<br>I. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s logic high. I<br>5 and 12) ard<br>asse motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | For rever                            | se rotation<br>ad; hense th<br>ad.<br>ng Name:<br>C<br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p<br>Same co                                      | (pin 2 logic lo<br>re "na" (not a<br>sorrespond<br>Range al<br>30-degree<br>., only char<br>60-degree<br>position ran<br>hasing of s                                                                     | w), the above<br>pplicable) in t<br>ing LM62<br>nd/or Com<br>phasing, b<br>ge is relativ<br>phasing, b<br>ges; i.e., or<br>ensor signa                                                        | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change<br>als.             | e colun<br>e colun<br>e<br>e<br>1.    |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"<br>"120 deg"              | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-80<br>190-8                                                                                                                                   | nd source out<br>ed sink and s<br>7<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | puts numb<br>ource outp<br>CABLE II<br>Sec<br>51<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                           | n input, pin 2, i<br>per two (pins -<br>pouts for four-pi<br><b>I. Alternativ</b><br><b>nsor Input</b><br><b>HS2</b><br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s logic high. I<br>5 and 12) are<br>asse motors a<br>ve Sensor<br>S<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | For rever                            | se rotation<br>ad; hense th<br>ad.<br>ng Name:<br>C<br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p<br>Same co                                      | (pin 2 logic lo<br>re "na" (not a<br>sorrespond<br>Range al<br>30-degree<br>., only char<br>60-degree<br>position ran<br>hasing of s                                                                     | w), the above<br>pplicable) in t<br>ing LM62<br>nd/or Com<br>phasing, b<br>ge is relativ<br>phasing, b<br>ges; i.e., or<br>ensor signa                                                        | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve directior<br>ut with shift<br>nly change<br>als.             | e colun<br>e colun<br>e<br>e<br>1.    |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"<br>"120 deg"              | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>180-240<br>240-300<br>180-240<br>240-300<br>180-240<br>240-300<br>180-240<br>120-180<br>180-240<br>240-300<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>180-240<br>180-240<br>120-180<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>190-240<br>190-240<br>190-240<br>190-240<br>19                                                                                                                                                             | nd source out<br>ed sink and s<br>7<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | puts numb<br>ource outp<br>CABLE II<br>Sec<br>51<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                           | n input, pin 2, i<br>per two (pins -<br>pouts for four-pl<br>i. Alternation<br>II. Alternation<br>II. Alternation<br>II. Alternation<br>II. II.<br>II.<br>II.<br>II.<br>II.<br>II.<br>II.<br>II.<br>II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s logic high. I<br>5 and 12) arr<br>hase motors a<br>ve Sensor<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1                                                                                                                                                                                     | For rever                            | se rotation<br>ad; hense th<br>ad.<br>ng Name:<br>C<br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p<br>Same co<br>phasing.                          | (pin 2 logic lo<br>re "na" (not a<br>sorrespond<br>Range al<br>30-degree<br>., only char<br>60-degree<br>position ran<br>hasing of s                                                                     | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b<br>ige is relation<br>phasing, b<br>iges; i.e., on<br>ensor signa                                                    | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 ments</b><br>ut in revers<br>ve direction<br>ut with shift<br>hly change<br>als.<br>120 deg" | e colun<br>e colun<br>h.<br>ted       |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"<br>"120 deg"<br>"240 deg" | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>0-60<br>60-120<br>120-180<br>180-240<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>190-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-2                                                                                                                                                           | nd source out<br>ed sink and s<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | Second        31        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        ) | n input, pin 2, i<br>per two (pins -<br>pouts for four-pi<br>I. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s logic high. I<br>5 and 12) are<br>nase motors a<br>ve Sensor:<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                      | For rever                            | se rotation<br>ad; hense th<br>ad.<br>ng Name:<br>C<br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p<br>Same co<br>phasing.<br>Same as               | (pin 2 logic lo<br>re "na" (not a<br>s<br>correspond<br>Range al<br>30-degree<br>., only char<br>60-degree<br>cosition ran<br>shasing of s                                                               | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Com<br>phasing, b<br>ige is relation<br>phasing, b<br>ges; i.e., on<br>ensor signa<br>above for "<br>phasing, b                        | he appropriat<br><b>1 Position</b><br><b>1 Position</b><br><b>1 Position</b><br><b>1 ut in revers</b><br>ve direction<br>ut with shift<br>120 deg"           | e colun<br>e colun<br>h.<br>ted<br>is |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"<br>"120 deg"              | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>120-180<br>180-240<br>180-240<br>180-240<br>190-60<br>100-60<br>120-180<br>180-240<br>100-60<br>100-60<br>100-60<br>100-60<br>100-60<br>100-60<br>100-60<br>100-60<br>100-60<br>100-120<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80<br>100-80                                                                                                                   | nd source out<br>ed sink and s<br>T<br>HS<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                             | (ABLE II)                                                                                                                                                                                                                                         | n input, pin 2, i<br>per two (pins -<br>pouts for four-pi<br>Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s logic high. I<br>5 and 12) are<br>rease motors a<br>ve Sensor<br>S<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                    | For rever                            | se rotation<br>ad; hense th<br>ad.<br>ng Name:<br>C<br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p<br>Same co<br>phasing.<br>Same as<br>order of p | (pin 2 logic lo<br>re "na" (not a<br>s<br>correspond<br>Range al<br>30-degree<br>., only char<br>60-degree<br>cosition ran<br>hasing of s<br>mment as a<br>30-degree                                     | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Corr<br>phasing, b<br>ige is relation<br>phasing, b<br>ges; i.e., on<br>ensor signation<br>above for "<br>phasing, b<br>iges, i.e., on | sink and souther appropriate <b>1 Position 1 Position 1 ut in revers</b> ve direction <b>1 ut with shift</b> nly change  als. <b>120 deg</b> "               | e colun<br>e colun<br>h.<br>ted<br>is |
| tates become et<br><b>sote 2:</b> For four-<br>above. <i>Figure 6</i> s<br><b>Alternate</b><br><b>Phasing</b><br>"60 deg"<br>"120 deg"<br>"240 deg" | xchanged.<br>phase motors sink a<br>shows how the requir<br>Position<br>Range<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>0-60<br>60-120<br>120-180<br>180-240<br>0-60<br>60-120<br>120-180<br>180-240<br>240-300<br>300-360<br>0-60<br>60-120<br>120-180<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>180-240<br>190-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-260<br>100-2                                                                                                                                                           | nd source out<br>ed sink and s<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                     | puts numb        CABLE II        Se        S1        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )        )                                            | n input, pin 2, i<br>per two (pins -<br>pouts for four-pi<br>I. Alternativ<br>nsor Input<br>HS2<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s logic high. I<br>5 and 12) are<br>nase motors a<br>ve Sensor:<br>s<br>HS3<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                      | For rever                            | se rotation<br>ad; hense th<br>ad.<br>ng Name:<br>C<br>Same as<br>order; i.e<br>Same as<br>order of p<br>relative p<br>Same co<br>phasing.<br>Same as<br>order of p | (pin 2 logic lo<br>(pin 2 logic lo<br>re "na" (not a<br>s<br>correspond<br>Range al<br>30-degree<br>a), only char<br>60-degree<br>bosition ran<br>hasing of s<br>mment as a<br>30-degree<br>bosition ran | w), the above<br>pplicable) in t<br>ding LM62<br>nd/or Corr<br>phasing, b<br>ige is relation<br>phasing, b<br>ges; i.e., on<br>ensor signa<br>above for "<br>phasing, b<br>iges, i.e., on     | sink and souther appropriate <b>1 Position 1 Position 1 ut in revers</b> ve direction <b>1 ut with shift</b> nly change  als. <b>120 deg</b> "               | e colun<br>e colun<br>h.<br>ted<br>is |

# Four-Phase Motor Commutation

Four-phase motors use a 90-degree (quadrature) rotor-position sensor phasing. This phasing scheme is also shown in Table I. LM621 Commutation Decoder Truth Table. As shown in Table I, the 90-degree phasing has only two rotor-


position-sensor signals, HS1 and HS2. When using the LM621 to run a four-phase motor the HS2 signal is connected to both the HS2 and HS3 chip inputs.

### **Dead-Time Feature**

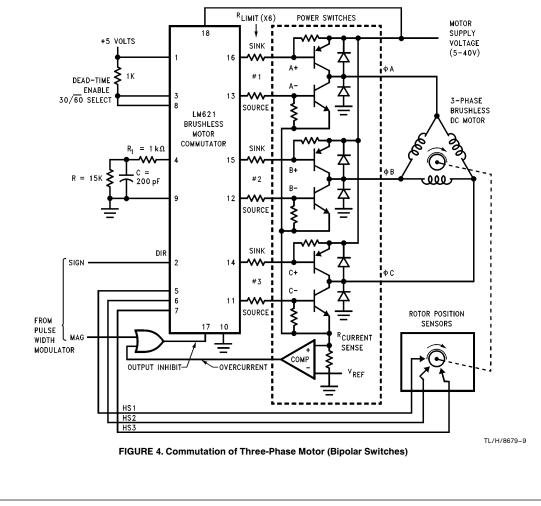
The DEAD-TIME ENABLE input is used to enable this feature (by connecting +5V to pin 3). The reason for providing this feature is that the external power switches are usually totem-pole structures. Since these structures switch heavy currents, if either totem-pole device is not completely turned off when its complementary device turns on, heavy "shoot-through" current spiking will occur. This situation occurs when the motor DIRECTION input changes (when all output drive polarities reverse), at which time device turn-off delay can cause the undesired current spiking.

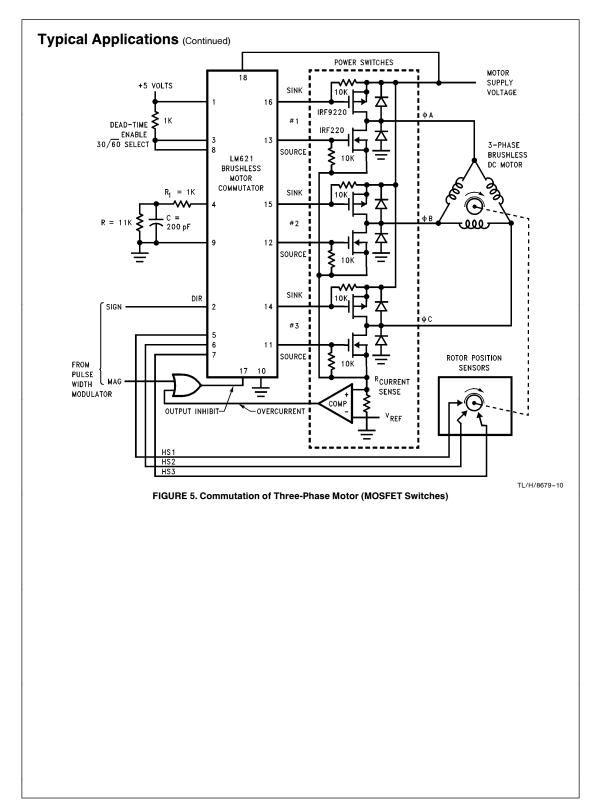
Figure 2 shows the logic of the dead-time generator. The dead-time generator includes an RC oscillator to generate a required clock. Pin 4 (CLOCK TIMING) is used to connect an external RC network to set the frequency of this oscillator. The clock frequency should be adjusted so that two periods of oscillation just slightly exceed the worst-case turn-off time of the power switching devices. As shown by

the graph in Typical Peformance Characteristics, the time of one clock period (in  $\mu s$ ) is approximately (0.756  $\times$  10<sup>-3</sup>) (R + 1) C, where R is in  $k\Omega$  and C is in pF; the period can be measured with an oscilloscope at pin 4. The dead-time generator function monitors the DIRECTION input for changes, synchronizes the direction changes with the internal clock, and inhibits the chip outputs for two clock periods. Flip-flops FF1 through FF3 form a three-bit, shift-register delay line, the input of which is the DIRECTION input. The flip-flops are the only elements clocked by the internal clock generator. The shift register outputs must all have the same state in order to enable the chip outputs. As soon as a direction change input is sensed at the output of FF1, gates G1 and G2 will be disabled, thereby disabling the drive to the power switches for a time equal to two clock periods.



#### Dead-Time Feature (Continued)


Dead-time is defined as the time the outputs are blanked off (to prevent shoot-through currents) after a direction change input. See *Figure 3*. It can be seen that the dead-time is two clock periods. Since the dead-time scheme introduces delay into the system feedback control loop, which could impact system performance or stability, it is important that the dead-time be kept to a minimum. From *Figure 3* it can be seen that the time between a direction change signal and the initiation of output blanking can vary up to one clock period due to asynchronous nature of the clock and the direction signal.


# **Typical Applications**

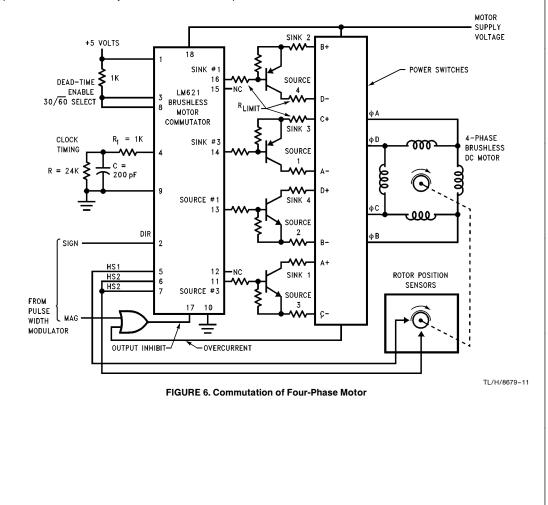
### THREE-PHASE EXAMPLES

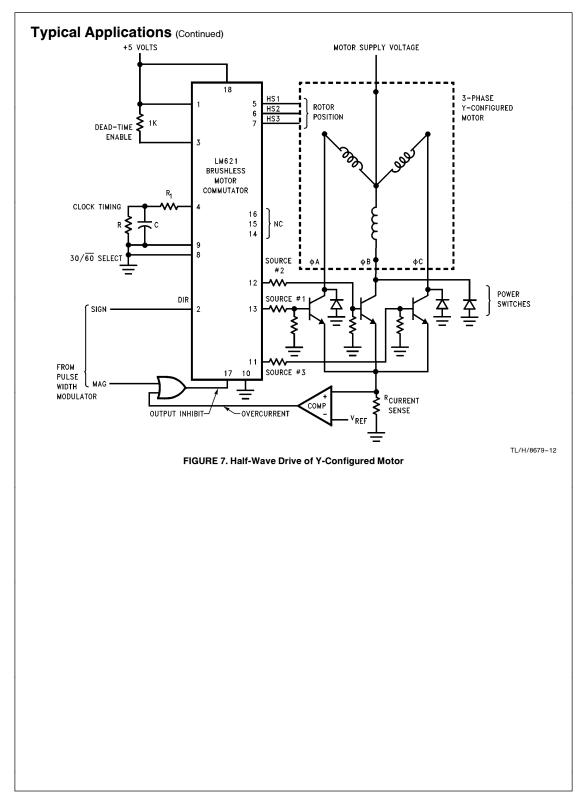
*Figure 4* is a typical LM621 application. This circuitry is for use with a three-phase motor having 30-degree sensor phasing, as indicated by connection of the  $30/\overline{60}$  SELECT input, pin 8, to a logic "1" (+5V). The same connection of the DEAD-TIME ENABLE input, pin 3, enables this feature. Typical power switches and a simple implementation of an overcurrent sensing circuit are also detailed in *Figure 4*. This application example assumes a device turn-off time of about 4.8  $\mu$ s maximum, as evidenced by the choice of R and C. See Typical Performance Characteristics. The choice of RC should be made such that two periods are at least equal to the maximum device turn-off time.

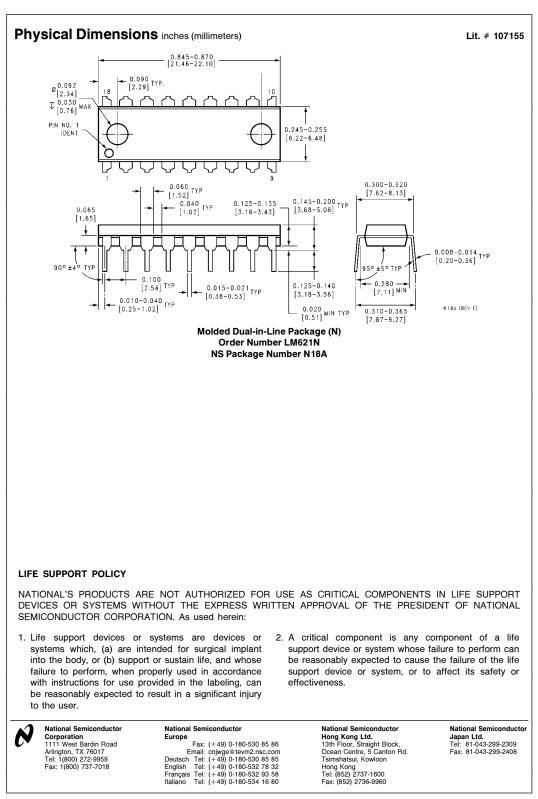
The choice of the value for R<sub>limit</sub> (the resistors which couple the LM621 outputs to the power switches) depends on the input current requirements of the power switching devices. These resistors should be chosen to provide only the amount of current needed by the device inputs, up to 50 mA (typical). The resistors minimize the dissipation incurred by the LM621. Although Figure 4 shows the 5-40V supply (pin 18) connected to the motor supply voltage, this was done only to emphasize the ability of the part to provide up to 40V output swings. For the bipolar power switches shown, connecting pin 18 to a 5V supply would reduce on-chip power dissipation. Driving FET power switches, however, may require connecting pin 18 to a higher voltage. Figure 5 is the three-phase application built with MOSFET power-switching components. Note that since the output  $V_{drop}$  (sourcing) is at least 1.5V,  $V_{CC2}$  can be chosen to avoid overdriving the MOSFET gates.






# Typical Applications (Continued)


# FOUR-PHASE EXAMPLE


Figure 6 is typical of the circuitry used to commutate a fourphase motor using the LM621. This application is seen to differ from the three-phase application example in that the LM621 outputs are utilized differently. Four-phase motors require four-phase power switches, which in turn require the commutator to provide four current-sinking outputs and four current sourcing outputs. The 18-pin package of the LM621 facilitates only three sinking and three sourcing outputs. The schematic shows the  $30/\overline{60}$  SELECT input in the 30-degree select state (pin 8 high) and rotor-position sensor inputs HS2 and HS3 connected together. This connection truncates the number of possible rotor-position input states to four, which is consistent with the 90-degree quadrature rotor-position signals provided by four-phase motors. With the LM621 outputs connected as shown, this approach provides the needed power-switch drive signals for a fourphase motor. Note that only four of the six LM621 outputs (SINK #1 and #3, and SOURCE #1 and #3) are used directly, and that these are also inverted to form the remaining four. SINK #2 and SOURCE #2 outputs are not used.

#### HALF-WAVE DRIVE EXAMPLE

The previous applications examples involved delta-configured motor windings and full-wave operation of the motor. The application shown in *Figure 7* differs in that it features half-wave operation of a motor with the windings in a Y-configuration. This approach is suitable for automotive and other applications where only low-voltage power supplies are conveniently available. The advantage of this power-switching scheme is that there is only one switch-voltage drop in series with the motor winding, thereby conserving more of the available voltage for application to the motor winding. Half-wave operation provides only undirectional current to the windings; in contrast to the bidirectional currents applied by the previous full-wave examples.







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications