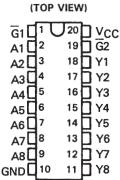
SDLS180 - AUGUST 1979 - REVISED MARCH 1988

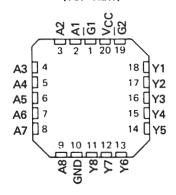
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins
- Data Flow-thru Pinout (All Inputs on Opposite Side from Outputs)

description

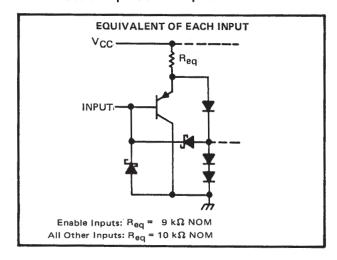
These octal buffers and line drivers are designed to have the performance of the popular SN54LS240/SN74LS240 series and, at the same time, offer a pinout having the inputs and outputs on opposite sides of the package. This arrangement greatly enhances printed circuit board layout.

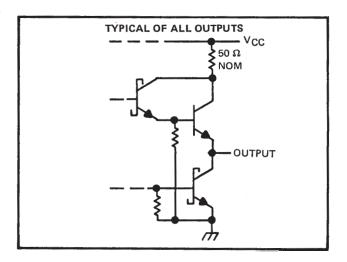

The three-state control gate is a 2-input NOR such that if either $\overline{G1}$ or $\overline{G2}$ are high, all eight outputs are in the high-impedance state.

The 'LS540 offers inverting data and the 'LS541 offers true data at the outputs.


The SN54LS540 and SN54LS541 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS540 and SN74LS541 are characterized for operation from 0°C to 70°C.

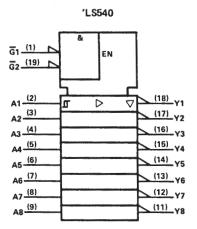
TYPE	RATED	RATED	TYPICAL POWER			
	İOL	¹он	DISSIP	ATION		
	(SINK	(SOURCE	(ENAB	LED)		
	CURRENT)	CURRENT)	'LS540	'L\$541		
SN54LS'	12 mA	- 12 mA	92.5 mW	120 mW		
SN74LS'	24 mA	- 15 mA	92.5 mW	120 mW		

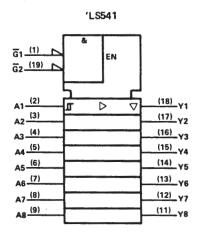

SN54LS540, SN54LS541 . . . J OR W PACKAGE SN74LS540, SN74LS541 . . . DW OR N PACKAGE



SN54LS540, SN54LS541 . . . FK PACKAGE (TOP VIEW)

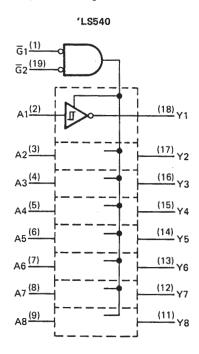
schematics of inputs and outputs

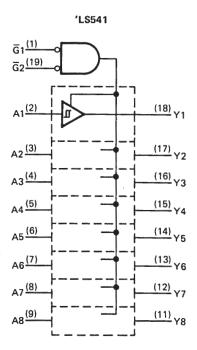

Copyright © 1988, Texas Instruments Incorporated



SN54LS540, SN54LS541, SN74LS540, SN74LS541 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

SDLS180 - AUGUST 1979 - REVISED MARCH 1988


logic symbols†



[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		 7 V
Input voltage		 7 V
Operating free-air temperature range	SN54LS540, SN54LS541	 \dots – 55°C to 125°C
		0°C to 70°C
Storage temperature range		 \dots 65°C to 150°C

NOTE 1: Voltage values are with respect to the network ground terminal.

SDLS180 - AUGUST 1979 - REVISED MARCH 1988

recommended operating conditions

PARAMETER		SN54LS'			SN74LS'		
PARAMETER		NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-12			- 15	mA
Low-level output current, IOL			12			24	mA
Operating free-air temperature, TA	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS†		SN54LS'			SN74LS'				
		TEST CONDITIONS.		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT		
VIH	High-level input volta	age			2			2			V	
VIL	Low-level input volta	ige					0.6			0.6	V	
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			- 1.5			- 1.5	V	
	Hysteresis (V _{T+} -	V _T _)	VCC = MIN		0.2	0.4		0.2	0.4		V	
V _{OH} High-level output voltage		$V_{CC} = MIN,$ $V_{IL} = V_{IL} max,$	$V_{IH} = 2 V$, $I_{OH} = -3 \text{ mA}$	2.4	3.4		2.4	3.4		V		
		itage	$V_{CC} = MIN,$ $V_{IL} = 0.5 V,$	$V_{IH} = 2V,$ $I_{OH} = MAX$	2			2			V	
VOL	Vol. Low-level output voltage		$V_{CC} = MIN,$ $V_{IH} = 2 V,$	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
VOL	Low lovel output voi	Tovor output voltage	VIL = VIL max	I _{OL} = 24 mA					0.35	0.5	•	
lozh	Off-state output current, H high-level voltage applied		$V_{CC} = MAX,$ $V_{IH} = 2 V,$	V _O = 2.7 V			20			20	μΑ	
lozL	Off-state output current, OZL low-level voltage applied		VIL = VIL max	V _O = 0.4 V			- 20			- 20	μΑ	
11	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 7 V			0.1			0.1	mA	
۱н	I _{IH} High-level input current, any input		V _{CC} = MAX,	V _I = 2.7 V			20			20	μΑ	
IIL	I _L Low-level input current		V _{CC} = MAX,	$V_1 = 0.4 V$			-0.2			-0.2	mA	
los	S Short-circuit output current§		V _{CC} = MAX		-40		-225	-40		-225	mA	
				'LS540		13	25		13	25		
		Outputs high]	'LS541		18	32		18	32		
loo	Supply current	Outputs low	V _{CC} = MAX,	'LS540		24	45		24	45	mA	
licc	ICC Supply current	Outputs	Outputs open	'LS541		30	52		30	52] ""^	
		All output	All outputs		'LS540		30	52		30	52	
		disabled		'LS541		32	55		32	55		

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SN54LS540, SN54LS541, SN74LS540, SN74LS541 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SDLS180 – AUGUST 1979 – REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		'LS540			'LS541			
				MIN	TYP	MAX	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output				9	15		9	15	ns
tPHL	Propagation delay time, high-to-low-level output	$C_L = 45 pF$, See Note 2	$R_L = 667 \Omega$,		9	15		10	18	ns
^t PZL	Output enable time to low level				25	38		25	38	ns
tPZH	Output enable time to high level				15	25		20	32	ns
tPLZ	Output disable time from low level	C _L = 5 pF,	$R_L = 667 \Omega$,		10	18		10	18	ns
^t PHZ	Output disable time from high level	See Note 2			15	25		18	29	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated